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Abstract 

 

Local active noise control systems can be used to generate a zone of quiet at a physical error 

sensor using one or more secondary sources to cancel the acoustic pressure and its spatial 

derivatives at the sensor location. The resulting zone of quiet is generally limited in size and 

as such, placement of the physical error sensor at the location of desired attenuation is 

required, which is often inconvenient. Virtual acoustic sensors overcome this by projecting 

the zone of quiet away from the physical error sensor to a remote location. The work 

described here investigates the effectiveness of using virtual microphones and virtual acoustic 

energy density sensors in a diffuse sound field. Expressions for the performance of the virtual 

microphones and virtual acoustic energy density sensors have been developed using the 

forward-difference extrapolation technique which has been rederived for use in diffuse sound 

fields. Results from simulations will be presented, together with experimental results obtained 

in a reverberant chamber.  

1. INTRODUCTION 

Local noise control strategies reduce the sound field at a number of points to create localised 

zones of quiet at the error sensors. While achieving significant attenuation at the error sensor, 

the zone of quiet is generally small and impractically sized. Elliott et al. [1] investigated the 

spatial extent of the zone of quiet when controlling pressure with a remote secondary source 

in a pure-tone diffuse sound field. The zone of quiet generated at the microphone was found 

to be defined by a sinc function, with the primary sound level reduced by 10 dB over a sphere 

of diameter one tenth of the excitation wavelength, λ/10. Attempting to broaden the zone of 

quiet, Elliott and Garcia–Bonito [2] extended previous theory to the control of both pressure 

and pressure gradient in a diffuse sound field with two secondary sources. Minimising both 

the pressure and pressure gradient along a single axis produced a 10 dB zone of quiet over a 

distance of half a wavelength, λ/2, in the direction of pressure gradient measurement. This is 

considerably larger than the zone of quiet obtained when minimising pressure alone.  

Virtual sensors are sometimes used in active noise control systems to shift the zone of 

quiet to a location that is remote from the physical sensor. Garcia-Bonito and Elliott [3] and 

Garcia-Bonito et al. [4] investigated the performance of virtual sensors in a diffuse sound field 

using the virtual microphone arrangement [5]. It was demonstrated that the virtual 
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microphone projects the zone of quiet away from the physical microphone to the location of 

desired attenuation. This virtual sensing strategy, however, uses the often invalid assumption 

of equal primary pressure at the physical and virtual locations, which the remote microphone 

technique overcomes [6]. The forward-difference extrapolation technique [7] is an alternative 

virtual sensing method that has several advantages. Firstly the assumption of equal primary 

pressure at the physical and virtual locations does not have to be made but also FIR filters or 

preliminary identification is not required.  

In this paper, optimal prediction algorithms for forward-difference virtual sensors in a 

diffuse sound field are derived. Since the assumptions made previously [7] when developing 

this virtual sensing technique are not valid in a diffuse sound field due to the short correlation 

lengths, this extrapolation method is derived specific to diffuse sound fields. One-dimensional 

virtual microphones and virtual energy density sensors that use both pressure and pressure 

gradient sensors are developed with this technique. The performance of these virtual sensors 

is then explored through numerically simulated and post-processed experimental control. 

2. THEORY 

In this section, stochastically optimal prediction algorithms for the forward-difference virtual 

microphones and virtual energy density sensors in a diffuse sound field are derived.  

For the present study, the primary and secondary acoustic fields are considered diffuse. 

The pressure at a position x in a single diffuse acoustic field is denoted pi(x) and gi(x) denotes 

the x-axis component of the pressure gradient. In the following pages, the subscript i refers to 

a single diffuse acoustic field, whereas a lack of subscript indicates the total acoustic field 

produced by superposition of the primary and secondary diffuse acoustic fields.  

For a displacement vector, r = rxi+ryj+rzk, the following functions are defined: 
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where k is the wavenumber. The correlations between the pressures and pressure gradients at 

two different points, xj and xk, separated by r, are given by [2] 
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where ⋅  denotes spatial averaging. In the case that xj and xk are at the same point, the limits 

of A(r), B(r) and C(r) as r →0 must be taken. 

If there are m sensors in the field, each measuring pressure or pressure gradient, then 

define p as an m×1 matrix whose elements are the relevant pressures and pressure gradients 

measured by the sensors. The pressure and pressure gradient at any point can be expressed as 

the weighted sum of the m components, each of which are perfectly correlated with a 

corresponding element of p and a component which is perfectly uncorrelated with each of the 

elements. Therefore, for each position x, p(x) and g(x) can be written as 
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where Hp(x) and Hg(x) are matrices of weights which are functions of the position x only and 

pu(x) and gu(x) are perfectly uncorrelated with the elements of p. It can be shown, by 

postmultiplying the expressions for p(x) and g(x) by p
H
 and spatially averaging, that  
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The aim here is to estimate the pressure and pressure gradient at a virtual location. In 

order to do this, p(x) and g(x) must be estimated from the known quantities in p. The pressure 

and pressure gradient at any point x are given by Equations 8 and 9. If only the measured 

quantities in p are known, then the best possible estimates of pu(x) and gu(x) are zero, since 

they are perfectly uncorrelated with the measured signals. Therefore the best estimates of 

pressure and pressure gradient at any point x are given by 
 

   ,)()(ˆ pH xx pp =         (15)     .)()(ˆ pH xx gg =         (16) 

 

In this paper, the following control strategies are analysed in a diffuse sound field: 

1. A single secondary source minimising the pressure at a virtual location estimated using 

the pressure and pressure gradient at a point. 

2. A single secondary source minimising the pressure at a virtual location estimated using 

the pressures at two closely spaced points. 

3. Two secondary sources minimising the pressure and pressure gradient at a virtual 

location using the pressures and pressure gradients at two closely spaced points. 

4. Two secondary sources minimising the pressure and pressure gradient at a virtual 

location using the pressures at four closely spaced points. 

 

In each of the four control strategies above, the virtual quantities are estimated using 

Equations 15 and 16. This requires matrix p whose elements are the relevant pressures and 

pressure gradients measured by the sensors and calculation of the weight matrices Hp(x) and 

Hg(x) using matrices Lp(x), Lg(x) and M defined in Equations 12 - 14. 

2.1 Theoretical lower bound for the relative change in mean squared pressure 

For each of the four control strategies, the lower bound for the relative change in mean 

squared pressure can be found as a function of α, the increase in mean squared pressure after 

control. The variable α is defined as 
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where <|p|
2
> is the mean squared pressure of the total acoustic field and since all fields are 
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diffuse, is equal to the sum of the mean squared pressure of the primary acoustic field, <|pp|
2
>, 

and the mean squared pressures of acoustic fields due to the secondary sources, <|ps|
2
>. Elliott 

et al. [1] demonstrated that when minimising the pressure with a single control source, the 

random variable β = <|ps|
2
>/<|pp|

2
> has an F2,2 distribution. As the variable α can be defined as 

α = 1 + β, substitution of β = α -1 into the F2,2 distribution gives the cumulative distribution 

function for α as 
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The expressions for the lower bound on the mean squared pressure present a worse case 

scenario and are summarised as follows [8]: 

1. One control source cancelling the pressure at x0, estimated using the pressure and 

pressure gradient at x1: 
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2. One control source cancelling the pressure at x0, estimated using the pressures at x1 and 

x2: 
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3. Two control sources cancelling the pressure and pressure gradient at x0, estimated using 

the pressures and pressure gradients at x1 and x2: 
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4. Two control sources cancelling the pressure and pressure gradient at x0, estimated using 

the pressures at x1, x2, x3 and x4: 
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3. NUMERICAL AND EXPERIMENTAL VALIDATION 

The performance of the four virtual sensor formulations was evaluated using a MATLAB 

simulation and post-processed experimental data. Quadratic optimisation [9] was used to 

simulate control using both the numerical model and the experimentally measured transfer 

functions, giving the limit on the maximum achievable feedforward control performance. 

The acoustic field was simulated using the numerical model described by Bullmore et al. 

[10]. This numerical model assumes that the pressure at any point is calculated using a finite 

modal summation. The enclosure model used in this simulation was that described by Elliott 

et al. [1] and was rectangular in shape with dimensions π m×e m×1 m. The constant damping 

ratio was set to be 0.0014 and the Schroeder frequency [11] was calculated as 400 Hz. An 

excitation frequency of 1.5 kHz was used and all modes with natural frequencies below 2 kHz 

were included so that the total number of modes was approximately 8000. A number of 

sources (dependent on the control strategy) were randomly located within the enclosure such 

that they were not within a wavelength of one another, or the enclosure walls. The average 

mean squared pressure [1] of the total controlled pressure field was computed over 200 source 

configurations at various distances in the x-direction from the point of cancellation.  

Post-processed control was implemented computationally using transfer functions 

experimentally measured in the reverberation chamber in the School of Mechanical 

Engineering at the University of Adelaide. The chamber has dimensions 6.840 m×5.660 m×  
4.720 m, a volume of V = 183 m

3
 and a Schroeder frequency [11] of 391 Hz. Six 

loudspeakers were located near the corners of the room allowing a large number of 

combinations of primary and secondary sources to be used. A condenser microphone and a 

Microflown, to measure pressure and pressure gradient respectively, were mounted to a 

stepper-motor traverse enabling measurement over a 465 mm×360 mm×320 mm volume. 

The sources were driven with a multi-tonal signal containing tones from 800 Hz to 3000 Hz in 

50 Hz increments and the complex transfer functions between each of the sources and the 
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sensors were measured. Using the averaging procedure described for the simulations, the total 

controlled pressure field was calculated. In applying post-processed control, the transfer 

functions between the secondary sources and the sensors were found to be poorly conditioned 

for certain source and sensor configurations, leading to inaccurate calculation of the optimal 

control strengths with quadratic optimisation. To improve results, poorly conditioned data sets 

were not included in the calculation of the mean squared pressure with control.  

4. RESULTS 

Figure 1 shows the performance of conventional control strategies directly minimising the 

measured quantities in numerically simulated and post-processed control. The solid vertical 

lines indicate the positions of the physical sensors. As shown in Figure 1 (a), minimising the 

pressure at the sensor location with a single control source reduces the primary sound pressure 

level by 10 dB over a distance of λ/10, for a value of α = 2 (where α is the 50
th
 percentile 

value). Minimising the pressure and pressure gradient with two control sources extends the 10 

dB zone of quiet to λ/2, for a value of α = 3.4, as shown in Figure 1 (b). 

Figure 2 shows the control profiles obtained with each of the virtual sensing strategies 

in a pure-tone diffuse sound field. The zones of quiet generated in numerically simulated and 

post-processed control are shown, together with the theoretical lower bound for the relative 

change in mean squared pressure. The dashed vertical line indicates the virtual location.  

It is clear from Figure 2 that virtual sensors are capable of projecting the zones of quiet 

away from the physical sensors to the desired location. Figure 2 (a) shows a comparison of the 

three evaluation methods when controlling pressure at a virtual location, estimated using the 

pressure and pressure gradient at a point, for a value of α = 2. A maximum attenuation of 

approximately 23 dB is achieved at the desired location with the numerical model while 

control predictions using the experimentally measured transfer functions achieved 17 dB of 

attenuation. A 10 dB reduction in primary sound pressure level is seen over a distance of λ/10 

in both numerically simulated and post-processed control. As expected, both these evaluation 

methods generate broader zones of quiet than the lower bound on performance. Similar 

control performance can be obtained using the pressures at two points to estimate the pressure 

at the virtual location as shown in Figure 2 (b). In comparison to Figure 1, control with a 

virtual microphone achieves higher levels of attenuation at the virtual location than 

conventional control strategies employing a single microphone. Using two control sources to 

minimise the pressure and pressure gradient at the sensor however, achieves higher levels of 

attenuation at the virtual location than control with a virtual microphone. 

The virtual energy density sensors outperform the virtual microphones by generating 

broader zones of quiet and achieving higher attenuation at the virtual location as seen in 

Figures 2 (c) and (d). Figure 2 (c) shows the control profiles for cancelling the pressure and 

pressure gradient at a virtual location, estimated using the pressures and pressure gradients at 

two points, for a value of α = 3.4. Similarly to the virtual microphones, higher attenuation is 

seen in numerically simulated control with greater than 50 dB achieved, while only 39 dB of 

attenuation is achieved with post-processed data. A 10 dB zone of quiet of size approximately 

0.4λ is generated in both the numerical simulation and post-processed control as opposed to 

0.5λ for pressure and pressure gradient control at the physical sensors. As seen previously, the 

numerical simulation and post-processed control produce larger zones of quiet than the 

theoretically derived lower bound on performance. Similar control performance can be 

obtained using the pressures at four points to estimate the pressure and pressure gradient at the 

virtual location as shown in Figure 2 (d). In comparison to Figure 1, control with a virtual 

energy density sensor achieves higher levels of attenuation at the virtual location than 

conventional control strategies employing a single microphone or an energy density sensor.  
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Figure 3 (a) shows the distribution of α, observed in both numerical and experimental 

control of pressure at the virtual location with a single secondary source, compared to Fα,1 

given by Equation (18). This distribution is seen to be a good fit with Fα,1 indicating that 

control of pressure at either the physical or virtual location results in the same distribution for 

α. The cumulative distribution function for α when using two secondary sources is shown in 

Figure 3 (b). It is most likely that the pressure level after control will be higher when using 

two secondary sources compared to a single secondary source. For example, the median (50th 

percentile) value of the increase in mean squared pressure after control, α, is approximately 2 

for a single control source and 3.4 for two control sources, as shown in Figure 3 (b). The 

distributions do not have a finite mean value, however, in practice they will be limited by the 

strengths of the secondary sources.  
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                         (a) Pressure control         (b) Pressure and pressure gradient control 

Figure 1. Control profiles obtained with the conventional control strategies. 
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                         (c) Virtual control method 3                             (d) Virtual control method 4 

Figure 2. Control profiles obtained with the virtual control strategies. 



ICSV14 • 9-12 July 2007 • Cairns • Australia 

 

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

C
u

m
u

la
ti

v
e

 d
is

tr
ib

u
ti

o
n

 f
u

n
c

ti
o

n

Theoretical distribution

Numerical control

Post-processed control

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

C
u

m
u

la
ti

v
e

 d
is

tr
ib

u
ti

o
n

 f
u

n
c

ti
o

n

One control source

Numerical control

One control source

Post-processed control

Two control sources

Numerical control

Two control sources

Post-processed control

 
         (a) Control methods 1 or 2 compared to Fα,1      (b) Control methods 1 or 2 (one control source) 

and 3 or 4 (two control sources) 
Figure 3. Cumulative distributions for α. 

5. CONCLUSION 

Prediction algorithms for forward-difference virtual sensors in a pure-tone diffuse sound field 

have been derived. Expressions have also been presented for the lower bound on the relative 

change in mean squared pressure, after cancelling the virtual quantities with remote secondary 

sources. Results of numerically simulated and post-processed control demonstrated that 

forward-difference virtual sensors are capable of minimising pressure and pressure gradient at 

a location that is remote from the physical sensors in a pure-tone diffuse sound field.  
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