14th

C a II’I’] S e A U S-I-rO ||O International Congress on
Sound

9-12 July, 2007 Vibration

FREE VIBRATIONS OF THE SYSTEMS OF RIGID BODIES
COUPLED BY ELASTIC BARS

Marina Pandreal, Nicolae-Doru Stinescu' and Nicolae Pandrea’

'Department of Applied Mechanics, University of Pitesti
Pitesti, 110227, Romania
s_doru@yahoo.com

Abstract

It is well known that by using the pliickerian coordinates the force at one end of the bar is
given by the product between the rigidity matrix and the difference between the displacements
at the ends of the bar. With the aid of this relation are obtained the differential equations of
the vibrations of a rigid bodies system coupled by elastic bars, the expressions of the rigidity
matrix and of the displacements of the rigid bodies being written in the general reference
frame. In the final part of the paper is presented an application for the vibrations of a system
consisted of two plane shells connected each one with a bar to the fixed system and coupled
one to the other by a bar.

1. INTRODUCTION

In the classical matrix calculus for the bars systems [1] it is proved that for a linear elastic bar
there exist two matrices of rigidity, and the column matrix of the force at one end is expressed
with the aid of the sum of the products between those matrices and the column matrices of the
bar ends normal sections' displacements. In the case when the normal sections displacements
at the ends of the bar are assimilated to some screws expressed in pliickerian coordinates [4]
or screw coordinates [6], then there exists only one rigidity matrix [1], [2], [4], and the matrix
of the pliickerian coordinates of the end of bar force is given by the product between the
rigidity matrix and the difference between the column matrices of the pliickerian coordinates
of the normal sections' displacements at the ends of the bar. Starting with this relation, in the
paper are established the differential equations of the free vibrations of the systems of rigid
bodies coupled by linear elastic bars and then is presented an application for two plane shells
coupled by bars and is given a physical interpretation for the vibration modes.

2. NOTATIONS

Let's consider the homogenous bar 4B by constant section in figure 1. We denote: / - length
of the bar; 4 - aria of the normal section; O" - middle point of the bar; O"x - longitudinal
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axis; Oy, O’z - principal inertial axes of the normal section which passes through O";
OXYZ - general reference frame; 7, I, - principal inertial moments of the normal section in
O"; I.- inertial moment for the conventional torsion stress; k,, k,, ..., k, - rigidities defined
by relations

A0 ¥

>

Figure 1. General notations.
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K’,, - bar's rigidity matrix with respect to frame O"xyz

[0 0 0k 0 O]
000 0%k O
. 0000 0k
Ko k, 00 0 0 0 @
0 ks 00 00
10 0k 0 0 O

D’,, D, - column matrices of the pliickerian coordinates in the system O*xyz of the screw
displacements of the sections in 4 and B
* T * T

D, = (eAx eAy eAz 8Ax 8Ay 8Az) s Dy = (eBx eBy eBz 83x 83y 8Bz) 5 3)
F;, F, - column matrices of the pliickerian coordinates in the system O"xyz of the screw
forces in points 4 and B; D ,, D, - column matrices of the pliickerian coordinates in the
system O“xyz of the screw forces in points 4 and B; F,, F, - column matrices of the
pliickerian coordinates in the system OXYZ of the screw forces in 4 and B; a,, B,, v,,

i =1,2,3 - director cosines o the axes O"x, O"y, O’z with respect to the system OXYZ ;

X, Y, Z - coordinates of the point O with respect to the system OXYZ ; R, G - matrices
of rotation, respectively translation
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o, O, O 0 -Z Y
R = Bl Bz B3;G: Z 0 -X 4)
Tv Y2 Vs -y X 0
I, 0 - unity, respective null matrix; T, T~ - positional matrices of the system O xyz
relative to the system OXYZ ;
R 0 R” 0
T = ; T = ; (5)
GR R R’G” R’
1 - matrix to symmetry;
—_— 0 I . 6
n - I 0 s ( )

K ,; - rigidity matrix of the bar in the general frame OXYZ .

3. CALCULUS RELATIONS

There exist [1], [2], [4] the following matrix relations:

F, =K, (D}, - D}); (7)

D,=TD,; D, =T'D,; D, =TD},; D, =T'D,; (8)
F, = TF;; F, = T'F,; F, = TF}; F; = T'F,; 9)
K, = TKZBT_I; (10)

F, =KAB(DA _DB)' (11)

4. DIFFERENTIAL EQUATIONS OF THE PROPER VIBRATIONS OF THE
SYSTEMS OF RIGID BODIES COUPLED BY ELASTICAL BARS

We consider the system drawn in figure 2 composed by two rigid bodies (denoted by 1, 2)
coupled between them by bars DE and coupled to the fix body O by bars A44,, BB,. We

use the following notations: C,, i =1,2 - weight centers of the bodies; Cx,yz,, i =1,2 -
J

systems of the principal inertial axes; m,, i = 1,2 - masses of the bodies; J.»J

yi? z ?

i =1,2 - principal inertial moments; M, i =1,2 - inertial matrices with respect to the

reference systems C.x,y,z,,
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Figure 2. System of two rigid bodies coupled by elastic bars.

0 0 0m 00
0 0 0 0m 0
oo 00 o0m
Mi=ly 0 000 0f (12)
0, 0000
0 0.J, 000

OXYZ - general reference system; T,), i = 1,2 - positional matrices of the systems C.x,y.z,
relative to the system OXYZ ; M,, i = 1,2 - inertial matrices relative to the system OXYZ,

M, = TiOM?Ti?)l; (13)

:
D,

- displacements matrices of the rigid bodies in the system OXYZ, matrices that verify the
following relations:

i =1,2 - displacements matrices of the rigid bodies in the systems Cx,y,z,;; D,, i = 1,2

D =T,D;;D,=D,; D, =D,. (14)

The screw forces that act onto the first rigid body being
_ZFA =_ZKAA0DI _ZKDE(DI _Dz)’ (15)

from the momentum and the moment of the momentum theorems, one obtains:

Mlﬁl + (ZKAAO + ZKDE)DI _(ZKDE)DZ =0; (16)
Mzﬁz _(ZKDE)DI +(ZKBBO +ZKDE)D2 =0,

or, if we denote
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K, = ZKAAO + ZKDE ; Ky = ZKDE s Ky = ZKBBO + ZKDE 5 (17)
we deduce the differential equations:
MD, +K,D, -K,D, =0; M,D, -K.,D, +K,,D, =0. (18)

For a system composed by » rigid bodies, we analogously deduce the system of matrix
differential equations

MD, +K,D -> KD, =0;i=12-,n, (19)

j=1
J#i
where K, =0 if the rigid i is not coupled by bar with the rigid ;.
We mention that the matrices M, K are not symmetric, but we keep this form to use

the same positional matrix both to the displacements' transformation and to the forces'
transformation. These matrices can be made symmetric using the relations:

M, =Mn; K, =K7. (20)
5. EXAMPLE
21 a a
Tyz*
o <
/‘ B, 02* B - | xj =
2 l
[
y3 3 |
|
1 . |
Tyl ” + %, <
4, o, 4 cl: S
|

Figure 3. Example.

Let's study the free vibrations of the system drawn in figure 3 composed by two identical
rectangular rigid shells by mass m and dimensions 2a, 2b, the shells being coupled by three
identical bars of length 2/ and by circular section of diameter d .

The bars being identical they have relative to the local reference systems O, x; y,z;,

i=1,2,3 the same rigidity matrix K" given by relation (2), where &, = i—?,
4
k, =k, = 43%, k, = %, ki =k, = %, I being the inertial moment, / = mi . Writing
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the first equation (16) in the system C,x,),z, and the second equation in the system C,x,y,z,
(fig. 3), it results:

+ [k, + Kb i - K, T,D; =0

MYB; - KD + K + Kb p; = o0.

2 2
The principal inertial moments of the shells being J = mjz , J, na ,

M , one obtains

m 0 0]
0m?oO
00m|
000
000
00 0]

o O o O

(22)

S O O O O

<

=

o o.~Noc o o

=)
<

n

; ; n _g@ _ s
For the successively obtain K, =K, =T.K'T.,

o _ *rl
Ky =T, KT, .
Further on, keeping into account the expression of the positional matrix,

rigidity matrices we

0
1
0

0
0
1

000]
000
000

02(+b)100 23)

0 0 010
+5)0 0 001]

S O O o =

relations:

and the A=k +k, A =-k(+b), A =-ka-k(+a), A, =2k,
A =kl +2a), A, =k, +k +k,(+b), Ak,all +b), A =k, + ks +k,a® + k(I +a),

Ay =2k, + k(I + af + k,(I + b + ka®>, B =k,; B, =k(+b), B, =k, B, =-ka,

B, = kya, B, =k, — k(I +b), By = kyall +b), By =k, + ksa?,
B, =k, + ka> — k,(I + b)’, one obtains the rigidity matrices
0 0 A 4 0 0 ] [0 0 B, B, 0 0]
0 0 A4, 0 4 0 0 0B 0 B 0
-4, 4, 0 0 0 4 -B, B, 0 0 0 B
KY + KW = 2 s Sl KO = 2 B 1,
Ao PPl 4, 4, 0 0 0 —4, e B, B, 0 0 0 B, 24
A4, A, 0 0 0 A, -B, B, 0 0 0 B,
0 0 Ay 4, 4, 0 | | 0 0 By, -B, B, 0
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0 0 -4, 4 0 0] 0 0 -B,B 0 0 ]
0 0 A4 0 4 0 0 0 B, 0B, 0
4, A 0 0 0 4,/ B, B, 0 0 0 B
K% + KW@ = 2 5 K@ | T2 6 1
BB b A, -4, 0 0 0 4, pE2 1B, -B, 0 0 0 -B, 25)
~4, 4 0 0 0 4 B, B, 0 0 0 B,
| 0 0 A4, -4, 4, 0 | |0 0 B, B,B, 0 |

and if we keep into account the local displacements D}, D}, D] = ( w9, 6. 98,98,39./),

D) = (GZX 0, 0,. 3,, 6,, 5,. )T, then the matrix equations (23) lead to the independent
systems

md, + A8, + A0,. + BS, + B,0,. =0; md, + A4S, + A8, + BS, + B,0,. =0;
Jzélz + AZSIX + A381y + A9elz - B282x + B482y + 310622 = 0’

.. .. 26
md, + Bd, — B,0, + 456, — 40, =0; m82y + B361y + B0, + A182y + 4.0, =0; (26)
JZéZZ + B261x + B461y + Bloelz - A282x + A362y + AQBZZ = 0 b

md,, + A8, — 4,0, + 40, + BS,, — B,6,, + BB, =0;

JO, — 4B + A8, + A0, + B3, + B0, + B, =0;

J0, + 4B, + 4,0, + AB,, + BS,, — BO,, + 48, =0;
.. ’ 27
md, + B, + B0, + Béely + A0, + 4,0, + Asezy =0; @7)

JxéZx - B)5,.+ B9, - 3861}7 + 4,6,. + 49,, - A782y =0;

J,0,, + BB, + BO,, + BO,, + A, — 4,0, + A40,, =0.

For the system (26) looking for solutions as

5, =0 cos(pt - (p); S, = S?y cos(pt - (p); 0, =0 cos(pt - (p), (28)

by linear combinations one obtains the independent systems

(4, + B, = mpY&), +83,) + (4, — B, O} - 03.) = 0:
(Al - B} - mpz)(s?y - 82}’)—’_ (A3 - B4)(e?z - egz) = 0’ (29)
(AZ _BZ)(S?X + ng)+ (A3 _B4)(8?y _62y)+ (A9 + BIO _szz)(eo _egy)z O’

ly

(4 = B, = mp* &9, - 82,) = 0;
(4 + B, = mp? 8, + 83, )+ (4, + B,)O +63.) = 0 (30)
(dy + BYSY, + 83, )+ (4, + By = J.p? O +65.) = 0.
Let's denote by dl(pz) the determinant of the coefficients of the unknowns 8¢, + &),
o6y, — 89, 0f, — 0], in the system (28) and let's denote by a’z(pz) the determinant of the
coefficients of the unknowns &f, — &3 , &Y, +8,, 0, + 0. in system (30). The first six

eigenpulsations result by solving the equations d, ( pz) =0;4d, ( pz) = 0. At the eigenpulsation
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A - B o . o
p, = ,/———=— corresponds the vibration mode where the shells have translation vibration in
m

their own plane, one anti-phase to another on the axes C\x;, C,x,. For the other two solutions
of the equation dz(pz) = (0 one obtains that the vibration modes that correspond to these
pulsation are represented by oscillatory rotational motions in phase around the points P, P,
situated onto the axes C.x, at the distance — A by the points C, (fig. 4).
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Figure 4. Vibration modes.

For those three pulsation that are obtained from equation d, (pz) = 0, vibration modes

consist of oscillatory rotational motions in anti-phase, the first shell having the oscillation
center at the point Pl(— n, i), and the second at the point P, (— n, &) Analogously, for the

system (27) the six eigenpulsations that are obtained correspond vibration modes that consist
of oscillatory rotational motions in phase and in anti-phase around some straight lines situated
in the planes C,x,y,, respectively C,x,y, the straight lines being symmetric (fig. 3) relative

to the axis O;y; .

6. CONCLUSIONS

In our paper we obtained the matrix equation of the free vibrations of a system of rigid bodies
coupled by elastic bars, using the pliickerian coordinates and the screw expressions of the
forces and displacements. The equations are simple and easy to handle. Finally, an example is
also presented.
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