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Abstract 
 
It is well known that by using the plückerian coordinates the force at one end of the bar is 
given by the product between the rigidity matrix and the difference between the displacements 
at the ends of the bar. With the aid of this relation are obtained the differential equations of 
the vibrations of a rigid bodies system coupled by elastic bars, the expressions of the rigidity 
matrix and of the displacements of the rigid bodies being written in the general reference 
frame. In the final part of the paper is presented an application for the vibrations of a system 
consisted of two plane shells connected each one with a bar to the fixed system and coupled 
one to the other by a bar. 

1. INTRODUCTION 

In the classical matrix calculus for the bars systems [1] it is proved that for a linear elastic bar 
there exist two matrices of rigidity, and the column matrix of the force at one end is expressed 
with the aid of the sum of the products between those matrices and the column matrices of the 
bar ends normal sections' displacements. In the case when the normal sections displacements 
at the ends of the bar are assimilated to some screws expressed in plückerian coordinates [4] 
or screw coordinates [6], then there exists only one rigidity matrix [1], [2], [4], and the matrix 
of the plückerian coordinates of the end of bar force is given by the product between the 
rigidity matrix and the difference between the column matrices of the plückerian coordinates 
of the normal sections' displacements at the ends of the bar. Starting with this relation, in the 
paper are established the differential equations of the free vibrations of the systems of rigid 
bodies coupled by linear elastic bars and then is presented an application for two plane shells 
coupled by bars and is given a physical interpretation for the vibration modes. 

2. NOTATIONS 

Let's consider the homogenous bar  by constant section in figure 1. We denote: l  - length 
of the bar;  - aria of the normal section;  - middle point of the bar;  - longitudinal 
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axis; ,  - principal inertial axes of the normal section which passes through O ; 
 - general reference frame; ,  - principal inertial moments of the normal section in 

; - inertial moment for the conventional torsion stress; , , …, - rigidities defined 
by relations 
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Figure 1. General notations. 
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,  - column matrices of the plückerian coordinates in the system O  of the screw 

displacements of the sections in  and 
xyz*

A  
 

AyAxAzAyAx δδθθθ ; ( )TByByBxB δθθ=*D ; (3)
 

,  - column matrices of the plückerian coordinates in the system O  of the screw 
forces in points  and 

xyz
A B ; ,  - column matrices of the plückerian coordinates in the 

system  of the screw forces in points  and 
AD

xyz A B ; ,  - column matrices of the 
plückerian coordinates in the system OXYZ  of the screw forces in  and 

F
A B ; , , iα iβ , 

 - director cosines o the axes O , ,  with respect to the system OXYZ ; x* yO* z*O
, ,  - coordinates of the point O  with respect to the system ; OXYZ R ,  - matrices 

of rotation, respectively translation 
G

 

2 



ICSV14 • 9-12 July 2007 • Cairns • Australia 

















γγγ
βββ
ααα

=

321

321

321

R ; ; 
















−
−

−
=

0
0

0

XY
XZ

YZ
G (4)

 
I ,  - unity, respective null matrix; ,  - positional matrices of the system O  
relative to the system OXYZ ; 

0 T 1−T xyz*
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η  - matrix to symmetry; 
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ABK  - rigidity matrix of the bar in the general frame OXYZ . 

3. CALCULUS RELATIONS 

There exist [1], [2], [4] the following matrix relations: 
 

( )****
BAABA DDKF −= ; (7)

 
*
AA TDD = ; ; AA DTD 1* −= *

BB TDD = ; BB DTD 1* −= ; (8)
 

*
AA TFF = ; ; AA FTF 1* −= *

BB TFF = ; F BB FT 1* −= ; (9)
 

1* −= TTKK ABAB ; (10)
 

( )BAABA DDKF −= . (11)

4. DIFFERENTIAL EQUATIONS OF THE PROPER VIBRATIONS OF THE 
SYSTEMS OF RIGID BODIES COUPLED BY ELASTICAL BARS 

We consider the system drawn in figure 2 composed by two rigid bodies (denoted by 1, 2) 
coupled between them by bars DE  and coupled to the fix body  by bars , . We 
use the following notations: ,  - weight centers of the bodies; ,  - 

systems of the principal inertial axes; , 

O 0AA

iii zyx
0BB
1=ii =iC 2 ,1

m
iC 2 ,

i 2 ,1=i  - masses of the bodies; , , , 
ixJ

iyJ
izJ

2 ,1=i  - principal inertial moments; , *
iM 2 ,1=i  - inertial matrices with respect to the 

reference systems , iiii zyxC

3 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

X

Y

Z

B0

B

A0

A

D E

x1

2x

y2

z2

y1

z1

0

2

1

 
Figure 2. System of two rigid bodies coupled by elastic bars. 
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OXYZ  - general reference system; , 0iT 2 ,1=i

2 ,
 - positional matrices of the systems C  

relative to the system OXYZ ; , 
iiii zyx

iM 1=i  - inertial matrices relative to the system OXYZ , 
 

1
0

*
0

−= iiii TMTM ; (13)
 

*
iD ,  - displacements matrices of the rigid bodies in the systems C ; , 2 ,1=i iiii zyx iD 2 ,1=i  

- displacements matrices of the rigid bodies in the system , matrices that verify the 
following relations: 

OXYZ

 
*

0 iii DTD = ; ADD =1 ; D BD=2 . (14)

 
 The screw forces that act onto the first rigid body being 
 

( )∑∑ ∑ −−−=− 2110
DDKDKF DEAAA , (15)

 
from the momentum and the moment of the momentum theorems, one obtains: 
 

( ) ( ) 0DKDKKDM =−++ ∑∑∑ 2111 0 DEDEAA
&&

( )
; 

( ) 0DKKDKDM =++− ∑∑∑ 2122 0 DEBBDE
&& , 

(16)

 
or, if we denote 
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∑∑ += DEAA KKK
011 ; ∑= DEKK 12 ; ∑ ∑+= DEBB KK

022K , (17)
 
we deduce the differential equations: 
 

0DKDKDM =−+ 21211111
&& ; M . 0DKDKD =+− 22211222

&& (18)
 
 For a system composed by  rigid bodies, we analogously deduce the system of matrix 
differential equations 

n

 

0
1

=−+ ∑
≠
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n

ij
j

jijiiiii DKDKDM && ; ni  , ,2 ,1 L= , (19)

 
where K  if the rigid i  is not coupled by bar with the rigid . 0=ij j

 We mention that the matrices M ,  are not symmetric, but we keep this form to use 
the same positional matrix both to the displacements' transformation and to the forces' 
transformation. These matrices can be made symmetric using the relations: 

i ijK

 
ηMM ii =

~ ; ηKK ijij =
~ . (20)
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Figure 3. Example. 

 
Let's study the free vibrations of the system drawn in figure 3 composed by two identical 
rectangular rigid shells by mass m  and dimensions , , the shells being coupled by three 
identical bars of length  and by circular section of diameter . 

a2 b2
l2 d

 The bars being identical they have relative to the local reference systems O , 

 the same rigidity matrix  given by relation (2), where 
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32 l
EIkk == , 
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l
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265 == , I  being the inertial moment, 

64

4dI π
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the first equation (16) in the system C  and the second equation in the system  
(fig. 3), it results: 
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 The principal inertial moments of the shells being 
3
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 For the rigidity matrices we successively obtain ( ) ( ) 1
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and the relations: , 211 kkA += ( )blk +− 2 , ( )alkakA +−−= 213 , 34 2kA = , 
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and if we keep into account the local displacements D , , *

1
*
2D ( )Tzyxzyx 111111

*
1 δδδθθθ=D , 

, then the matrix equations (23) lead to the independent 
systems 

( T
zyxzyx 222222

*
2 δδδθθθ=D )

 
0222112111 =θ+δ+θ+δ+δ zxzxx BBAAm &&

1913121 θ+δ+δ+θ yxzz AAAJ &&

0222112112 =θ−δ+θ−δ+δ zxzxx AABBm &&

1014122 θ+δ+δ+θ yxzz BBBJ &&

; m ; 
; 

; ; 

, 

0222112111 =θ+δ+θ+δ+δ zxzxx BBAA&&

02102422 =θ+δ+δ− zyx BBB

0232114132 =θ+δ+θ+δ+δ zyzyy AABBm &&

0292322 =θ+δ+δ− zyxz AAA

z

1

(26)

 
02622251512141 =θ+θ−δ+θ+θ−δ+δ yxzyxzz BBBAAAm &&

02827221716121 =θ+θ+δ+θ+θ+δ−θ yxzyxzxx BBBAAAJ &&

02528261817151 =θ+θ−δ+θ+θ+δ+θ yxzyxzyy ABBAAAJ &&

02522241612152 =θ+θ+δ+θ+θ+δ+δ yxzyxzz AAABBBm &&

02726221817122 =θ−θ+δ+θ−θ+δ−θ yxzyxzxx AAABBBJ &&

02827211918162 =θ+θ−δ+θ+θ+δ+θ yxzyxzyy AAABBBJ &&

; 

; 

; 

; 

; 

. 

(27)

 For the system (26) looking for solutions as 
 

( )ϕ−δ=δ ptixix cos0 ; ( )ϕ−δ=δ ptiyiy cos0 ; ( )ϕ−θ=θ ptiziz cos0 , (28)
 
by linear combinations one obtains the independent systems 
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( )( ) 00

2
0
1

2
11 =δ−δ−− xxmpBA

( )
; 

( ) ( )( ) 00
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0
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0
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2 =θ+θ++δ+δ zyy BAmp−+ zBA
( )

; 
( ) ( )( ) 00
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0
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0
1 =θ+θ−++δ+ zzyy pJBAδ+ zBA . 

(30)

 
 Let's denote by  the determinant of the coefficients of the unknowns ( 2

1 pd ) 0
2

0
1 xx δ+δ , 

,  in the system (28) and let's denote by 0
2

0
1 yy δ−δ 0

2
0
1 zz θ−θ ( )2

2 pd  the determinant of the 
coefficients of the unknowns 0

2
0
1 xx δ−δ , 0

2
0
1 yy δ+δ , 0

2
0
1z zθ+θ  in system (30). The first six 

eigenpulsations result by solving the equations ( ) 02
1 =pd ; ( ) 02

2 =pd . At the eigenpulsation 
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=  corresponds the vibration mode where the shells have translation vibration in 

their own plane, one anti-phase to another on the axes , . For the other two solutions 
of the equation  one obtains that the vibration modes that correspond to these 
pulsation are represented by oscillatory rotational motions in phase around the points ,  
situated onto the axes  at the distance 
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ii xC
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Figure 4. Vibration modes. 

 
 For those three pulsation that are obtained from equation ( ) 02

1 =p , vibration modes 
consist of oscillatory rotational motions in anti-phase, the first shell having the oscillation 
center at the point ), and the second at the point )ξη  , . Analogously, for the 
system (27) the six eigenpulsations that are obtained correspond vibration modes that consist 
of oscillatory rotational motions in phase and in anti-phase around some straight lines situated 
in the planes C , respectively C  the straight lines being symmetric (fig. 3) relative 
to the axis O . 

1
*
3

*
3 y

22 yx

6. CONCLUSIONS 

In our paper we obtained the matrix equation of the free vibrations of a system of rigid bodies 
coupled by elastic bars, using the plückerian coordinates and the screw expressions of the 
forces and displacements. The equations are simple and easy to handle. Finally, an example is 
also presented. 
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