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Abstract 
 
The propulsion shaft of a ship is investigated. It is modelled by the Dynamics of an Elastic 
Body Method. Oil film forces are obtained by the Average Eigenvalue Method. The effect of 
rotation velocity and oil film force on the response of the shaft under shock is considered; the 
flexibility of the bearing housing is also considered. The equations of motion of the main 
propulsion shaft of the ship are derived; they are solved using classical theory. In the end, the 
Runge-Kutta Method is used to do the numerical simulation. Results show that oil film bearings 
have a good effect on the alleviation of the vibration of the shaft. 
Keywords: Propulsion shaft, Oil film, Dynamics of an Elastic Body 

1. INTRODUCTION 

Large rotation shafts have been widely used in engineering for a long time. Such as propulsion 
shaft of the ship, rotor of hydraulic and stream turbo generator and so on. Because those shafts 
are key-components of the whole system, their vibration may affect the whole system and the 
devastation caused by the vibration may be disastrous [1]. So the research on the vibration of 
the shafts attracts the attention of scholars from home and abroad.  

A difference in design between the propulsion shaft and other shafts is that, for 
propulsion shaft, it will inevitably encounter shock environment in its life. How to resist shock 
load generated by different excitation sources is a problem that must be considered in design of 
the propulsion shaft. But very few materials on the analysis of the propulsion shaft under 
dynamical shock load are available [7]. So how to guarantee the stability of the shaft under 
shock is a problem to which attention must be paid.  

In engineering area, the coupling effect of the lateral vibration and the rotation velocity is 
traditionally neglected because the rotation velocity of the propulsion shaft is not very high. So 
in the analysis of vibration of the shaft, it is generally considered as rigid body or only the 
lateral vibration is considered without considering its coupling with the rotation [5][6]. How 
much the influence of the rotation velocity on the dynamic response of the shaft is, and whether 
it is neglectable will be discussed in this paper. 
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When considering the effect of the rotation velocity on the dynamic response of the shaft, 
the dynamics of an elastic body may be used to model the shaft [3]. The commonest modeling 
method is the Transform Matrix Method, other methods including Finite Element Method, 
Energy Method, and the Dynamics of Multi-Rigid or Elastic Body Method and so on [5]. The 
advantage of the dynamics of an elastic body method is that it can easily include the rotation 
effect and the oil film forces. Various numerical methods were used to analyze the trajectory of 
journal center motion. Such as Mode Superposition Method, Central Difference Method, 
Houbolt Method ,Wilson-θ Method and Newmark-β Method, etc [7]. 

At present, most research considered the bearing bush to be motionless; few materials 
that considered the flexibility of the bearing are available [4]. As all the bearings are placed on 
the ship which belongs to elastic body and the bearings themselves have stiffness, consideration 
of the stiffness of the support systems is desirable to predict the result more accurately. So, 
establishing the dynamic model considering both of the stiffness and carrying on some study on 
it is a focus of this paper. 

2. MODELING OF THE OIL FILM BEARING 

The schematic figure of the oil film bearing is shown in Fig. 1. For convenience, some 
simplifications have been made to the model: 

a. The mass of the bearing bush is disregarded; 
b. The elastic supports under the bearing bush are simplified as spring-damper systems; 
c. For the supporting part，the torsion and the deflection effect are ignored. 

                                   
Fig.1 The oil film bearing                             Fig.2 Coordinate of the oil film bearing 
 

Fig. 2 is a sketch of the coordinate of the oil film bearing. The xyo1  coordinate system is fixed 
to the bearing bush; the rto2  coordinate system is fixed to the shaft. 

Here we use the average eigenvalue method to solve the Reynolds equation of the oil 
film. The basic principal of the average eigenvalue method is to divide the dynamical parts in 
Reynolds equation into squeeze effect and wedge effect and solve them separately to get the 
corresponding eigenvalue. The solution of Reynolds equation is the superposition of the two 
solutions. The detailed derivation is shown in [2], here only the result is listed. 

The dimensionless oil film forces are 
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Whereω  is the angular velocity of the rotor, ε  is the eccentricity ratio, φ  is the vortex 
angle (see Fig.2). 

The functions 1( )f ε , 2( )f ε and 3( )f ε in equation (1) are 
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Where 1λ , 2λ are average eigenvalues [2], B is the width-diameter ratio rLB 2/= , L is 
the width of the bearing, r  is the radius of rotor Rr = . 

The dimensionless oil film forces under the xyo1 coordinate system are 
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And the dimensional oil film forces under the same coordinate are 
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312μω
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312μω
=                                            (4) 

Since the bearing bush is connected to the support systems, it must satisfy the following 
conditions 
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Where： k  and c  are the stiffness and the damping coefficients of the support system 
respectively, cc yx , are the displacement of the center of the bearing bush. 

3. MODELING OF THE SHAFT 

As the real structure of the propulsion shaft is very complex, before the derivative of the 
dynamic equation, the following simplifications are introduced: 

a. The shaft is modelled as elastic continual and symmetrical beam; 
b. The stress and the deformation are linear correlated to the velocity of deformation; 
c. The section of the shaft will keep as plane and perpendicular to the central line; 
d. The unbalance due to deformation is small, a first order approximation is adopted. 

In order to fully describe the position of the shaft in the derivation of the dynamic equation, 
three coordinates are adopted (see Fig.3): 

a. inertia coordinates zyxo III−  (global coordinate) 
b. rotation coordinates zyxo RRR−  (describe the rotation of the shaft) 
c. sliding coordinates zyxo EEE−′  (for convenience of describing the position of the point) 
 

 
Fig. 3 Coordinate systems 

As shown in Fig.3, at z position of the shaft, get a dz length element, and the radius vector 
of a random point in the element under the sliding coordinate system E r  may be described as 
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( )E ER R z R E= + +r A r r ρ      where    0
T

R x yr r⎡ ⎤= ⎣ ⎦r  
Differentiate it yields the velocity of the point 

[ ( ) ]E EI IE ER R z R IE E
d
dt

= + +v A A A r r A ρ E s E IE E= + %v ω ρ  

Where EIA , IEA  and ERA  are the transform matrix, IEω is the angular velocity of the 
global coordinate system relative to the sliding coordinate system, sv is the velocity of the mass 
center of the element. 

In global coordinate the momentum of the element may be expressed as 
( )IE E s E IE E IE E sdm dm= + =∫ %P A v A vω ρ

 
(As the original of the sliding matrix is in the center of the mass, so the integration about 

ρ is zero) 
Apply the momentum theorem to the element yields 

( ) 0IE E s E IE E s Idm d+ − =& %A v v fω  
Where df  is the external applied load. Described in the rotation coordinate R we have  

                         0R R IR R Rd d d+ − =& %P P fω                                              (6) 
Here, the following relation is applied 

( )AE E E IE Ed d+& %A p pω [ ( )]AE EI IE E
d d
dt

= A A A p ( )AI IA A
d d
dt

= A A p A A IA Ad d= +& %p pω  

4. THE STATE EQUATIONS AND THE MODAL FUNCTION 

4.1 The state equations 

As shown in Fig.3, let the deformation of the shaft at z position in R coordinate 
be 0

T

R R x R yr r⎡ ⎤= ⎣ ⎦r . Express it in the global coordinate we have I IR R=r A r  

Where IRA  is the transform matrix form R coordinate to global coordinate I. 
0
0
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For the i-th bearing, from the geometry of Fig.2 the displacements of the center of the 

bearing can be easily obtained to be 
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Where 
T

x yf f⎡ ⎤⎣ ⎦ is the external applied load.                                                                                           

As xr ， yr  have the same boundary condition, we may have the following assumptions
： 
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Where 31 AA −  and 61 BB −  are coefficients. 

4.2 Choose of modal function: (free-free boundary conditions) [8] 

The free-free boundary conditions are 
z=0,  0)0()0( =′′′=′′ ii uu  
z=l,   0)()( =′′′=′′ lulu ii  

The characteristic root of the frequency equation is 
1coshcos =ll λλ  

00 =lλ ， 73.41 =lλ ， 853.72 =lλ ， 2/)12( πλ +≈ nlnL  
The modal function 

)sin(sinhcoscosh)( zzEzzzu nnnnnn λλλλ +−+=                                 (10) 
Where                        
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The rigid body translation modal is         1)(0 =zu   (m=0)                                                    (11) 

The rigid body rotation modal is            
L
zzu 21)(1 −=   (m=1)                                              (12) 

From the modal function (10), (11) and (12) we may get the coefficients, substitute them 
into the state equation (9) yields the solution of the state equation corresponding to every 
modal. And the numerical solution of the nonlinear equations (5) and (6) is the inverse 
transformation of the state variables to real variables. 
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5. ANALYSIS OF THE SHOCK RESPONSE OF THE MAIN PROPULSION 
SHAFT 

5.1 figure of the propulsion shaft 

 
Fig.4 The propulsion shaft 

5.2 shock function 

Here the acceleration input is adopted，it is from the Germany navy criterion BV043/85, they 
are half-sine waves, see Fig. 5 
 

       
Longitudinal shock acceleration                                    Horizontal shock acceleration 

Fig.5 Shock acceleration 

5.3 Results and discussion 

5.3.1  Comparison with the Finite Element Method 

In order to verify the correctness of the model established by the Dynamics of an Elastic Body 
Method, we compare the results of a simple case with those obtained from the Finite Element 
Method. In the Finite Element Method, the propulsion shaft is treated as continuous beam. As 
the Finite Element Method for beam is well established in almost every Finite Element book, so 
the modelling process is ignored, here only the result is given. Because the Finite Element 
Method is difficult to compute the case 0ω > , we choose 0ω = . And the shock acceleration is 
simply chosen to be 0xa = , 500sin( / 0.006)ya tπ= , 0za =  (the duration of the shock is 0.006). 
Fig.6 is the comparison of the shock response of the propeller where the left figure is the result 
by Finite Element Method; the right figure is the result by Dynamics of an Elastic Body 
Method. 

 
Fig.6 Comparison of the shock response of the propeller 
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From Fig.6 we can see that the relative error of the two methods is very small (within 8%) 
which means that the Dynamics of an Elastic Body Method is reliable.  

5.3.2  The selection of the order of the modal 

Table 1. Trial results of every modal 
Number of modal(N) Maximum 

response 0 1 2 3 4 5 6 7 8 9 10 
x(m) 0.018 0.049 0.031 0.048 0.066 0.057 0.066 0.066 0.073 0.071 0.076
y(m) 0.039 0.080 0.065 0.091 0.107 0.100 0.115 0.106 0.129 0.129 0.122

In order to find a reasonable, simple model, we choose different order of modal to do the 
simulation. From Table 1 we can see that, from eight orders of modal, the effect of the order of 
modal to the displacement response is very small, so eight orders of modal is sufficient in 
calculation. Here we adopt the eight orders of modal. 

5.3.3  Shock response of the propulsion shaft 

The two horizontal axes are time and the position of the shaft respectively; the longitudinal axis 
is the shock response of the shaft. (The rotation velocity of the propulsion shaft is 100 n/min.) 

 
Fig.7 Shock response of the propulsion shaft 

From Fig.7 we can see that, as there is a very large appending mass on the propeller 
(including the appending mass of the water), the response of the propeller is very large. 

5.3.4  The effect of oil film force 

Two cases are studied, one has oil film forces, and the other doesn’t. The comparison of 
maximum shock response is shown in the following table. 

Table 2. Comparison of maximum shock response 
Maximum response    no oil film force     with oil film force     reduce by(%) 

x 0.0681 0.0567              16% 
y 0.1160 0.0999              14% 

From Table 2 we can see that when oil film force exists, the maximum shock response of 
the shaft reduces both in x and y direction. So for propulsion shaft who always encounter shock 
environment, the installation of oil film bearing can protect the shaft from being destroyed.  

5.3.5  The effect of rotation velocity on the response of the shaft 

In order to study the effect of rotation velocity on the response of the shaft, we use different 
rotation velocity to do the simulation. The maximum response of the shaft under different 
rotation velocity is shown in the following figure.  
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Fig.8 Shock response of the propulsion shaft for different rotation velocity 

From Fig.8 we can see that rotation velocity has an important effect on the maximum 
response of the shaft. The classical static analysis may be deficient. 

6. CONCLUSIONS 

Based on the analysis and simulation, the following conclusions may be drawn: 
(1) In the modelling of the nonlinear oil film model of the shaft, the vortex effect, the 

squeeze effect and the coupled effect of multi oil film bearings are considered, the flexibility of 
the bearing housing is also considered. Results show that the oil film bearings have a good 
effect on the alleviation of the vibration of the shaft. 

(2) The Dynamics of an Elastic Body is used to model the shaft，The equations of 
motion of the main propulsion shaft of the ship are derived accordingly; the comparison with 
Finite Element Method proves that this model is reasonable. 

(3) This paper uses classical theory to disperse the equations of the shaft, the result is 
sufficient enough with only the first eight orders of modal, so the disperse method is applicable. 

(4) From the analysis of this paper, the rotation velocity of the shaft is important to the 
maximum response of the shaft. So the classical static analysis may be deficient. Results will be 
more accurate if rotation velocity of the shaft is considered. 

(5) The model establish in this paper may be used as a basis for further analysis of control 
and reliability. 

REFERENCES 

[1] Cao Shuqian, “Research on several modern nonlinear dynamical problems of high-dimensional complex 
rotor system”, doctoral thesis, Tianjin University, 2003 

[2] Chi Changqing, Fluid Mechanics Lubrication, Beijing: National Defence Industry Publishing House, 1998 
[3] H.Bremer, F.Pfeffir, Elastische Mehrkörpersysteme, B.G.Teubner Stuttgart, 1992 
[4] K. Raghunandana, B. C. Majumdar, and R. Maiti, “Stability of Flexibly Supported Oil Journal Bearings 

Using Non-Newtonian Lubricants: Linear Perturbation Analysis”, Journal of Tribology, 123(3),  651-654 
(2001) 

[5] M.A.Brown, “Application of multibody methodology to rotating shaft problems”, Journal of Sound and 
Vibration, 204(3), 439-457 (1997) 

[6] O.S.JUN and J.O.KIM, “Free bending vibration of a multi-step rotor”，Journal of Sound and Vibration, 
224(4),625-642 (1999) 

[7] SHEN Rongying, ZHANG Zhiyong, WANG Yu, “Shock Response of Propulsive Shaft of Vessels”, 
shipbuilding of China,41(3),74-79 (2000) 

[8] Weide Qu, Handbook of machine vibration, China machine press, 1992 


