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Abstract 
 
Horn loaded loudspeakers are a type of loudspeaker used to efficiently radiate sound in a 
directional manner. Traditional horn theory takes a lumped parameter approach and these 
models are found to be inadequate at mid to high frequencies, as well as only being able to 
predict the sound pressure on axis. No directional information is provided with these models, 
and alternative approaches such as finite or boundary element methods are sought to 
overcome these limitations. This paper compares results obtained using two alternative 
boundary element based techniques, a traditional direct boundary element method and a new 
source superposition technique. Two representative horn loaded loudspeakers are modelled, 
and the results are compared to experiment. 

1. INTRODUCTION 

Horn loaded loudspeakers are often used as components in cinema sound systems. Figure 1 
(a) shows a horn loaded loudspeaker mounted on top of a low frequency direct radiator 
loudspeaker. This system is located behind the cinema screen. 

A horn loaded loudspeaker consists of two main components: a compression driver and 
a horn flare. A typical arrangement for a horn loaded loudspeaker is shown in Figure 1 (b). 
The source, or compression driver, consists of a small (usually titanium) diaphragm driven by 
a conventional electro-magnetic drive (voice-coil and magnet) into an abrupt change in cross 
sectional area. The flare changes the cross sectional area gradually from the throat through to 
the mouth of the horn, increasing the efficiency of the sound radiation. This means that less 
amplifier power is required for a given acoustic output, and is the traditional reason for the 
use of horns in audio. 
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Figure 1. (a) Commercially available cinema loudspeaker system. (b) Schematic of a horn 
loaded loudspeaker system. 

 
 

Horn flares are also used to control the spatial distribution of sound emanating from the 
horn mouth (the beamwidth). For the case of cinema audio, it is critical to the listening 
experience that the sound can be broadcast evenly onto the audience at all frequencies 
(frequency independent beamwidth) with no variation in volume with frequency (smooth 
frequency response). Horn design methods published in the last 30 years have often 
emphasised control over beamwidth rather than frequency response [1, 2]. This is because 
control over beamwidth can be gained at the expense of smooth frequency response by 
introducing internal reflections in the horn, and the resulting poor frequency response can be 
compensated by using a large amplifier and level equalisation. Thus modern horn design is 
typically a compromise, and good sound quality is often achieved by trial and error because 
the physical mechanisms that control sound quality are poorly understood. 

A review of the horn literature reveals that an approximate equation by Webster [3] can 
be used to estimate the performance characteristics of horns, provided there is a smooth 
variation in cross sectional area with distance along the horn axis. Models that use this 
equation generally tend to model acoustic impedance to a reasonable degree of accuracy, at 
least for low frequencies, but most acoustic horn models do not accurately model the far field 
acoustic pressure either on or off axis. This leads to the conclusion that while these simple 
models may be suitable for optimisation to produce a smooth frequency response, they would 
not be suitable for optimisation of the beamwidth. 

Alternative approaches to modelling acoustic horns such as Finite Element Analysis 
(FEA) or the Boundary Element Method (BEM) have been found in the literature [4, 5]. 
However, while these methods can eliminate problems associated with the approximate 
equation of Webster, it has been found that fully 3-D FEA is intractable for large horn models 
and the high frequencies of interest for cinema applications, and unsuitable for application to 
optimisation techniques [6]. There is also evidence that fully 3-D direct BEM is similarly 
unsuitable for the mid to high frequencies needed for cinema applications [7]. 

This paper investigates the application of a fully 3-D direct BEM [8], as well as a 
relatively new source superposition BEM [9], to the modelling of two representative horn 
loaded loudspeakers. First, experiments to measure the beamwidth of the two small horns are 
described and results presented. Procedures using both the direct BEM and the source 
superposition method are given, and the results of calculations compared to experiments. 
Finally conclusions are drawn as to the utility of numerical modelling of horn loaded 
loudspeakers using boundary element methods. 
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2. EXPERIMENTS 

Two simple axi-symmetric horns have been manufactured for experimental testing. These 
horns, shown in Figure 2, both have a 2 inch (50 mm) diameter throat; an 11 inch (280 mm) 
diameter mouth with a 1 inch (25 mm) flange; and 9.25  inches (235 mm) in length. One horn 
has an exponential variation in area between the throat and the mouth, and the other is a two 
step conical horn. 

                
 

(a)                                                                (b) 
Figure 2. Representative small horns (a) Exponential (b) Two Step Conical. 

 
The horns were placed unbaffled on an indexed rotating platform on an elevated tower inside 
a large open space. The pressure frequency response of each horn was measured at a distance 
of 3 m from the centre of the mouth of the horn in 5º intervals ranging from on-axis (0º) to 90º 
off-axis. At each frequency of interest, a polar plot of the magnitude of the pressure measured, 
normalised by the maximum pressure, was produced. Figure 3 shows the sound field of the 
conical horn at three different frequencies: 550 Hz, which is a low frequency for this size horn 
and shows a wide beam of sound; 2000 Hz, which shows a narrowing of the sound field; and 
4600 Hz, which shows a beam pattern with an “on axis null”, and is evidence that a velocity 
distribution other than that corresponding to the plane wave mode exists at the horn mouth. 
These experimental results give impetus for the development of accurate numerical models of 
horn loaded loudspeakers. 
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Figure 3. Polar plot of the magnitude of the measured pressure, normalised by the maximum pressure, 

for a conical horn at three different frequencies. 
 
The beamwidth is defined as the angle formed by the -6 dB points, with reference to the 
maximum sound pressure value and the source centre [10, 11], and is a measure of the 
distribution of sound in the specified plane. Figure 3 shows the measured beamwidth for the 
three different frequencies, and Figure 4 shows a plot of the beamwidth verses frequency for 
both experimental horns. 
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Figure 4. Experimental measurements of the variation of beamwidth with frequency for the 
exponential and two step conical horns shown in Figure 2. 

3. THEORY 

The governing equation of time harmonic linear acoustics is the scalar Helmholtz equation [8, 
9, 12, 13]: 

( ) ( ) 022 =+∇ xpkxp                                                  (1) 

where  is the pressure and ( )xp ck /ω=  is the wavenumber, fπω 2=  is the circular frequency, 
 is the frequency and c  is the speed of sound in the medium, in this case air. This equation 

is derived from the linearised equations of conservation of momentum and mass. Equation (1) 
requires appropriate boundary conditions. The velocity at the interface between a solid and a 
fluid can be related to the gradient of pressure as: 

f

( ) ( )xvi
n
xp

nρω=
∂

∂                                                         (2) 

where  is the normal direction, n ρ  is the density of the fluid and ( )xvn  is the normal velocity. 
For external problems, where the sound radiates away from the structure to infinity, another 
boundary condition called the Sommerfield radiation condition is needed. 

One approach to solving Equation (1) would be to discretise it directly and solve for the 
pressure at every point in the field. This is the approach that FEA takes, but there are 
limitations when solving problems in an infinite domain that must be truncated in order to 
solve the problem. The Sommerfield radiation condition must be enforced, otherwise 
reflections from the boundary can affect the result. The development of appropriate boundary 
conditions and their incorporation into a finite element analysis is a topic of ongoing research 
[14]. 

Another approach is to replace the solid surface that is being modelled with a distribution 
of fundamental solutions to Equation (1). A monopole is a fundamental solution that can be 
derived from the linearised equations of conservation of momentum and mass with the 
addition of a localised volume velocity injection. This represents the sound field due to a 
point source, and is called the “free space” Green’s function: 

( )
R

exxg
ikR

s π4
| =                                                               (3) 

where  is the distance between , the position of the source and R sx x  the position of the field 
point. Note that Equation (3) is singular when the source and field point coincide. 
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A dipole is also a fundamental solution of Equation (1), derived from the linearised 
equations of conservation of momentum and mass with the addition of a localised force. It 
represents the sound field of two monopoles in close proximity operating 180º out of phase 
and is the directional derivative of Equation (3): 

( )
n

xxg s

∂
∂ |                                                                  (4) 

Conceptually, any solid surface can be replaced by a distribution of monopoles and 
dipoles. The effect of the surface is replaced by the action of a distribution of forces aligned 
normal to the boundary, and the imposed velocity is replaced with the injection of volume 
velocity. Figure 5 shows a representation of this effect. 
 

 
(a)                                         (b) 

Figure 5. A solid surface with an imposed velocity over part of the surface, (a), can be replaced 
by a suitable distribution of monopoles and dipoles, (b). 

4.1 Direct BEM 

The Kirchoff-Helmholtz (K-H) integral equation [8, 9, 12, 13]: 
 

( ) ( ) ( ) ( ) ( ) ( ) ds
n
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where  is a position dependent constant, can be derived from either physical arguments 
using monopoles and dipoles [15] or from vector calculus and Green’s theorem [9,13]. This is 
the fundamental equation of direct BEM, and shows that the pressure at any point can be 
represented by the surface integral of a combination of monopoles and dipoles. In this 
equation, the dipole source strength is weighted by the surface pressure. Given a distribution 
of surface normal velocity, once the surface pressure is found, any pressure field can be 
calculated. 

( )xc

The direct BEM finds the surface pressure by discretising Equation (5) with  nodes and 
 elements similar to those used in FEA. If the field point is positioned at each surface node 

(or “collocated”) then a series of  equations for the  surface pressures can be found for a 
given velocity distribution. The equations are generated by numerical integration over each 
element, and the integration technique used must be capable of dealing with the singularities 
found at the locations of the monopoles and dipoles. The equations can be formed into a 
matrix and inverted using standard linear algebra techniques. Once the matrix is inverted, and 
the surface pressures known, the field pressures can be calculated. 

nn

en

nn nn

There are a number of disadvantages to the direct BEM approach. The K-H integral 
equation represents the sound field on the exterior of a finite volume. At the natural 
frequencies of the interior of the finite volume, the exterior problem breaks down and the 
matrix becomes ill-conditioned. This is well documented [16] and many solutions have been 
attempted [17, 18]. 
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Another problem occurs when the two surfaces of interest are brought close together, 
resulting in “thin-shape breakdown” [19]. This means that although an acoustic horn is 
probably best represented with a thin surface, a direct BEM simulation will have to assume 
the horn is contained in an enclosing volume to avoid thin shape breakdown. 

The direct BEM code used in this research is HELM 3D [8], a Fortran 77 implementation 
using linear elements. The CHIEF method is used to overcome the interior natural frequency 
problem. For this application the code was modified to accept quarter symmetric models. The 
horns simulated are quarter symmetric and this modification was necessary to reduce overall 
run time. 

4.1 Source superposition 

The source superposition technique of Koopmann and Fahnline [9] does not solve the K-H 
equation directly. Instead, it uses an expansion of the pressure at a field point in terms of a 
series of monopoles and dipoles, each placed at the centroid of each element of the discretised 
surface: 
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where  is the number of elements,  is the source strength, en ms mα and mβ are constants 
depending on whether the source is a monopole, dipole or combination of the two (tripole). 
Monopoles are used to represent sources on the surface of an infinite baffle, dipoles are used 
to represent thin surfaces and tripoles are used to represent the surface of the exterior of a 
finite volume. The use of tripoles eliminates the interior natural frequency problem of the 
direct BEM and this technique is capable of modelling thin surfaces directly. 

The normal velocity can be found using Equations (2) and (6): 
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and the volume velocity over elementμ  of the boundary surface can be found by integrating 
Equation (7) over the element surface, 
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for en,...,1=μ . This produces a series of  equations with  unknown source strengths. 
The resulting matrix can be inverted to find the source strengths, . Once these strengths are 
found, the sound field can be reconstructed using Equation (6). 

en en

ms

The source superposition code used in this research is the Fortran 77 program Power [9]. 
This program has also been modified for quarter symmetry. 

3. RESULTS 

Simulations of both the conical and exponential horn have been undertaken for both the 
direct BEM and source superposition techniques. Figure 6 shows the surface mesh used to 
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discretise the conical horn, at a nominal 6 elements per wavelength. Note the quarter 
symmetry and the need for the horn to be placed in an artificial volume for the direct BEM. A 
small volume is placed over the rear of the horn throat in the source superposition mesh to 
stop sound radiating out from the rear of the horn. A unit velocity was placed at the throat of 
the horn, represented by the blue area in Figure 6. For the conical horn, the number of 
variables to be solved for the direct BEM is 1105 compared to 631 for the source 
superposition technique. 

 
(a)                                                                             (b) 

Figure 6. Surface mesh of the conical horn (a) direct BEM, (b) source superposition. 

The beamwidth of the horns was calculated for frequencies from 300 to 5000 Hz at 50 Hz 
intervals. The upper frequency was chosen to limit the run time required for the direct BEM 
method. Figure 7 shows a comparison with experimental results for both direct BEM and the 
source superposition method. The agreement between both methods and experiment is 
excellent. The source superposition technique was found to produce results ~15-20 times 
faster than the direct BEM. On an Intel P4 1500 MHz, running Windows XP, the run time is 
222 seconds per frequency for the direct BEM and 10 seconds per frequency for the source 
superposition technique. 

    
(a)                                                                                   (b) 

Figure 7. Comparison of measured and calculated beamwidth for (a) conical and (b) exponential horn. 

3. CONCLUSIONS 

Numerical models of horn loaded loudspeakers have been developed, which accurately model 
the beamwidth over the frequency range simulated. The source superposition technique is 
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found to give similar results to the direct BEM, but is 15 to 20 times faster. Future work on 
the source simulation technique is needed to find its limits. Preliminary simulations have 
found that accurate results for the beamwidth can be achieved with element spacings of 3 per 
wavelength, less than the often quoted standard of 6 per wavelength [20]. It has also been 
found that the matrix produced is very diagonally dominant, and an iterative solution 
technique could potentially speed up the simulation by an order of magnitude, especially for 
large problems. 
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