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Abstract

This paper describes recent work on the optimisation of very complex or computationally ex-
pensive systems such as those found in many engineering acoustics applications. It uses opti-
misation techniques that require no knowledge of the derivative of the objective function with
respect to the input variables, and hence is suitable for application to problems where the deriva-
tive is potentially noisy or expensive to calculate by a finite difference approximation, difficult
to calculate analytically, or simply unavailable as is the case in many commercial codes.

The paper begins with a brief review of optimisation methods as applied to acoustic prob-
lems, and discusses the limitations of traditional techniques. The theory of two derivative free
optimisation methods, a parallel genetic algorithm and a surrogate optimisation technique called
Efficient Global Optimisation (EGO) are then described. Two example cases are then discussed:
the optimisation of the position and design parameters of vibroacoustic absorbers mounted on
the interior of a rocket payload bay to reduce the payload interior pressure fluctuations on
launch; and the shape optimisation of an audio loudspeaker to improve sound quality. Finally
future directions and challenges in this field are discussed.

1. INTRODUCTION AND LITERATURE REVIEW

The development of modern computational simulation methods, often in conjunction with ex-
tensive experimental programmes, has allowed engineers and designers to improve product
quality. Simulation methods commonly used in the acoustic domain include volume based dis-
cretisation approaches such as Finite Element Analysis (FEA) or a surface based integral equa-
tion discretisation such as the Boundary Element Method (BEM). These techniques are often
coupled with a structural analysis, usually a shell based Finite Element calculation. The number
of elements required by the discretisation to produce an accurate representation of the system
can be large, and the response of the system is usually desired over a wide range of frequencies.
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Hence the calculations required with simulation based models can often be computationally
intensive.

If a suitable measure of product quality can be defined, then mathematical optimisation
techniques can potentially automate the design process. A model of the system under consider-
ation is generated (such as an acoustic model of the interior of a vehicle), consisting of inputs
(such as parameters that define acoustic lining position and parameters) and outputs (simula-
tion results, such as interior acoustic pressure). The outputs of the model are then reduced to a
function that quantifies the objective (for example average sound pressure near the occupants’
heads). This objective function is then used by the optimisation routine to systematically change
the inputs to the model until the "best" objective has been achieved (reduced sound levels for
the occupants).

The use of gradient based optimisation techniques, such as Sequential Quadratic Program-
ming (SQP) [1] is often problematic when optimising objective functions calculated using sim-
ulation models. Gradients are often very difficult to calculate analytically, requiring the use of
a finite difference approximation and multiple objective function calculations. Other problems
include noisy gradients and convergence to local instead of global minima. Global optimisation
methods that do not require gradient information from the simulation are thus of great interest.

There are a wide range of potential topics in engineering acoustics, and in this paper we
limit ourselves to the interaction of acoustics with mechanical structures (similar to Tinnsten
et al. [2]). The review of the literature outlined here can be in no way comprehensive, and for an
extensive review of structural acoustic optimisation for passive noise control see Marburg [3].

Genetic Algorithms (GAs) have been used for many vibroacoustic optimisation problems
such as finding optimal locations for active control actuators [4–7], the optimisation of acoustic
absorber configuration [8, 9] and musical instruments [10]. GAs are used because of their ease
of implementation, their ability to take discrete parameter values and deal with multiple minima
in the objective function [11].

In the surrogate optimisation technique, the true objective function is replaced with a
computationally inexpensive approximation. The current state-of-the-art in acoustic surrogate
optimisation is the work of Marsden et al. [12, 13], for the shape optimisation of trailing edge
noise, where a surrogate model is placed within a provably convergent pattern search method,
Mesh Adaptive Direct Search (MADS). Each computation is a computationally expensive Com-
putational Fluid Dynamics (CFD) calculation which takes approximately 2 − 3 weeks of wall
clock time. After 1 iteration of the 5 parameter optimisation, an 85% reduction in noise was
reported with a total of 8 expensive calculations performed. A total of 21 less expensive steady
state CFD calculations were used to filter out infeasible regions of the solution. Interestingly
there was also a 65% increase in lift and a 15% decrease in drag.

In the current work, we give two examples of derivative free optimisation methods that
have been used to solve acoustic optimisation problems. In the first, a genetic algorithm is used
to solve a very large coupled vibro-acoustic problem involving optimising the placement and
parameters of up to 500 absorbers on the interior surface of a rocket payload bay. The objective
of the optimisation is to reduce payload bay pressure fluctuations on launch. This is a very
difficult optimisation problem, with up to 2500 variables to be solved. Analytical gradients are
difficult to calculate in this instance, because the position of each absorber is limited to the
nodes on the underlying finite element mesh.

The second example is the shape optimisation of an audio product to improve its sound
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quality. The sound field produced by a horn loaded loudspeaker is calculated using a boundary
element like method, with the horn geometry parameterised by splines. Modifications to the
shape of the horn influence the sound field projected onto the audience, and a suitable sound
quality metric is used as an objective function. The optimisation technique used is a surro-
gate based, where the true objective function is replaced by a statistical model that interpolates
between objective function evaluations, giving both a measure of the value of the objective func-
tion between known points and a measure of uncertainty. An auxiliary optimisation problem is
then solved using this surrogate, which is computationally inexpensive to evaluate, giving the
next most likely place to find an improvement in the true objective function.

The structure of this paper is as follows: first the theory of each optimisation method is
described; next details of the application examples are presented; and finally future directions
are discussed.

2. THEORY

2.1. Asynchronous parallel genetic algorithm

Genetic Algorithms (GAs) belong to a class of optimisation methods called search heuristics
which “seek an acceptable improvement rather than a provably optimal solution by methodically
searching the feasible region” [14] and they are classified as incomplete methods [15]. Despite
no provable convergence they are popular optimisation methods possibly because of their ease
of implementation, ability to escape local minima, ability to use discrete values of the input
parameters and ability to rapidly locate a good solution.

GAs take cues from evolutionary processes. The optimisation takes place using a popula-
tion of individuals. Details of each individual that give rise to specific traits (i.e. the parameters
to be optimised) are encoded as chromosomes. The objective function calculated for each in-
dividual provides a fitness ranking. The selection operator randomly selects a given individual
based on its fitness from the population for inclusion in recombination (where parents repro-
duce their genetic material in offspring) and possibly in mutation (random perturbations of the
chromosome). The optimisation proceeds iteratively with both the average and maximum fitness
increasing progressively as new generations are produced.

As the objective function must be calculated for a population of individuals, GAs are well
suited to parallel evaluation. One useful paradigm is that of master-worker, where the objective
function evaluations are conducted by “worker” computers and a “master” computer is respon-
sible for managing the population by conducting the selection, recombination and mutation
processes. An asynchronous GA implemented using the publicly available Condor distributed
computing environment [16] is described here and in more detail in Howard et al. [17].

The Genetic Algorithm Toolbox [18] was used as a basis for developing an asynchronous
parallel GA. The parameters to be optimised are encoded using either an integer or binary
scheme. The asynchronous GA was developed with guidance from Stanley and Mudge [19],
and operates as shown in Figure 1.

2.2. Efficient Global Optimisation

Efficient Global Optimisation (EGO) [20, 21] is a gradient free surrogate based global optimi-
sation technique. The EGO technique proceeds as follows and is summarised in Figure 2. A
number of different sets of input parameters are randomly generated to give a representative
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1. The GA generates a random initial population.
2. The objective functions are evaluated for the initial population using the Condor pool.
3. The GA checks how many jobs are already being calculated by the worker processes and if it has not exceeded a chosen value (it is

possible to have more jobs in the Condor queue than the number of computers in the pool), then

(a) The results from the objective function evaluations are sorted in rank order based on their fitness.
(b) A new set of individuals is created by performing selection, mutation and recombination operations.
(c) A file containing the parameters for the chromosomes is generated for submission to the Condor pool. The files are placed in

a unique directory, where all the files relevant to that particular objective function evaluation reside. The job is then submitted
to the Condor pool.

4. The directory structure is checked for the existence of a file called success.sub, which indicates that the objective function evaluation
was completed successfully. The jobs that are ready to have their results read back into the GA are formed into a queue, with the oldest
jobs at the front of the queue.

5. The results from the objective function evaluation from the oldest job in the queue are retrieved.
6. The new population is inserted into the old population by replacing the chromosomes in the old population that had the worst fitness.
7. The process repeats from step 3 until a predetermined number of iterations is reached.

Figure 1. Asynchronous parallel Genetic Algorithm

sample over the range of potential solutions. Here the random samples are generated by Im-
proved Hypercube Sampling (IHS) [22], which attempts to generate a space filling design, but
any suitable design of experiments method could be used.

The objective function is evaluated for each set of input parameters and a surrogate model
is fitted to the objective function. This surrogate model describes both the variation of the mean
value of the objective function between the sample points and the uncertainty between them, and
is much less computationally expensive to evaluate than the original objective function. In this
application, a Kriging technique is used [23]. Kriging techniques, developed in the geostatistics
and spatial statistics fields, fit a surface to a set of data point values. It models the variation of
the unknown function as a constant value plus the variation of a normally distributed stochastic
variable. It is essentially a method of interpolation between known points that gives a mean pre-
diction, ŷ (x), in addition to a measure of the variability of the prediction, s (x), the estimated
standard deviation. Another appropriate optimisation technique such as SQP, simulated anneal-
ing [24] or the DIRECT method [25] is then employed to solve an auxiliary problem to find the
next best place to sample for a minimum primary objective function. The secondary objective
function used to solve the auxiliary problem in this application is the Expected Improvement
(E [I]) objective function. The improvement function (I) is defined as the improvement of the
current prediction, ŷ (x), at point x over the minimum value of the current set of samples, ymin,
i.e.

I = max (ymin − ŷ (x) , 0) (1)

The expected improvement, defined as the expectation of the improvement, is given by

E [I] = (ymin − ŷ (x)) CDF
(

ymin − ŷ (x)

s (x)

)
+ s (x) PDF

(
ymin − ŷ (x)

s (x)

)
(2)

where CDF is the standard normal cumulative density function, and PDF is the standard nor-
mal probability density function. The point at which the value of the expected improvement is
maximised gives the best point at which to calculate the true objective function. The Expected
Improvement is constructed to search for both local and global minima [20, 21]. The surrogate
model is then updated to include the newest sampled point, and the operation repeated until
the sampling point does not change and the global minimum of the objective function has been
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found.

1. An initial set of input parameters is selected using IHS.
2. The true objective function is evaluated for all new members of the set.
3. A Kriging surrogate model is fitted to the values of the objective function.
4. The expected improvement objective function, calculated using values from the computationally inexpensive Kriging model, is min-

imised using any suitable global optimisation method.
5. The result of the minimisation (the next input parameters most likely to improve the true objective function) is added to the set.
6. The process repeats from step 2 until a predetermined number of iterations is reached.

Figure 2. Efficient Global Optimisation algorithm

One advantage of the EGO method is that it requires a minimal number of true objective
function evaluations, and most of the optimisation is done on the computationally inexpensive
surrogate. This makes the method very efficient when the objective function is computationally
expensive.

3. EXAMPLE APPLICATIONS

3.1. Rocket fairing interior noise

A finite element model of a composite fibre rocket payload fairing was created, as shown in
Figure 3a. The fairing has dimensions of 1m diameter and 5m height. One method suggested
for reducing the noise levels inside the payload bay during the launch of the rocket is to use
passive tuned-mass-dampers and Helmholtz resonators attached to the fairing walls. Optimisa-
tions were conducted to determine the parameters for the locations, resonance frequencies and
damping of the acoustic and vibration absorbers for 10, 100, and 500 absorbers attached to the
fairing. A constant added mass ’budget’ of 10% of the fairing mass was divided amongst the
absorbers. The optimisations were conducted using a parallel asynchronous genetic algorithm
implemented on a distributed computing network, as described in Howard et al. [26]. The re-
sults of the optimisation of 500 absorbers after over 200,000 objective function evaluations is
shown in Figure 3b. The results indicate that the effect of the absorbers is to create a ’fuzzy’
vibro-acoustic response, by ‘smearing’ the acoustic potential energy across the frequency range,
rather than bifurcating the response at resonances, which is typical for passive reactive devices.
Figure 3c shows the reduction in the internal acoustic potential energy with increasing number
of absorbers. The results show the effect of combined vibration and acoustic absorbers, and
the effect of the Helmholtz resonators with a lumped ’blocking’ mass, to demonstrate that the
sprung mass in the vibration absorbers provides measurable benefit.

These optimisations required significant computational resources for the greater than
200,000 objective function evaluations. If the optimisation had been conducted on a single
3.0GHz Pentium it would have taken 417 days. By using a distributed computing network of
about 150 computers of varying processor speeds from 1.8GHz to 2.4GHz, the time taken to
conduct the optimisation was less than 14 days.

3.2. Horn shape optimisation

Horn loaded loudspeakers increase the efficiency and control the spatial distribution of the radi-
ated sound. They are often used as components in cinema sound systems where it is desired that
the sound be broadcast onto the audience uniformly at all frequencies, improving the listening
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Figure 3. RSLVF (a) Finite element model of the fairing, (b) Acoustic potential energy versus frequency
for 500 PVADs and (c) Acoustic potential energy versus the number of PVADs.

experience. The sound distribution, or beamwidth, is related to the shape of the horn and can
be predicted well by the source superposition method [27]. However the cost of evaluating the
objective function is high. Gradient calculation is also difficult with finite differences because
of the discrete nature of the meshing used such that a small change in horn profile could lead
to a jump in the objective function. A spline based parametrisation was used to define the horn
geometry, and a two parameter EGO optimisation was performed. Further details on the opti-
misation including the primary objective function that was used are presented in Morgans [28]
and Morgans et al. [29].

The results of the EGO optimisation of the horn appear in Figure 4a. A contour of the
Kriging surrogate mean predictions of the objective function is shown, along with the positions
of the EGO sample points. The 25 circular markers show the initial sample points, and the 25
square markers show the sample points chosen by the Expected Improvement function, balanc-
ing both local and global optimisation. A convergence to the global minimum can be seen with
repeated sampling (many square markers) around the global minimum (diamond marker) at
x(1) = 0.49 and x(2) = 0.69. The horn profile corresponding to the global minimum is shown
in Figure 4c, and the beamwidth calculated from the optimal horn profile is shown in Figure
4b. Figure 4b reveals that a constant beamwidth as a function of frequency has been achieved
above a low frequency limit, thus providing a superior listening experience for the audience.

4. CONCLUSIONS AND FUTURE DIRECTIONS

It has been shown that both derivative free methods examined work well for simulation based
optimisation. The GA performs well for problems with a very large number of parameters,
enabled by the use of a distributed computing environment and the robustness of the GA tech-
nique. The EGO method performs well for smaller dimensional problems where the objective
function is very expensive.

Future directions and challenges are many for the field. One obvious improvement not
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Figure 4. (a) Optimisation trajectory for the two parameter spline horn geometry, Optimal two parameter
spline horn (b) Beamwidth and (c) Geometry profile

directly related to the optimisation method chosen is to improve the computational speed of the
simulation, and if analytic gradients can be calculated then their use dramatically improves the
speed and robustness of many optimisation algorithms. Both methods described here have only
used bound constraints (the parameters are limited between upper and lower values). General
constraints can be handled in GAs through various methods including penalty and filter meth-
ods. Constrained EGO algorithms have been developed [30], but they have been found by the
authors to be fragile. It may be possible to use EGO as a search step inside a provable conver-
gence pattern search algorithm such as MADS and use filter methods for constraints [13]. As the
number of optimised parameters increase, the EGO method breaks down because of the sparsity
of the data supplied to the Kriging surrogate model. Instead of using a statistical surrogate like
Kriging, a simplified physics based surrogate could possibly be used in a similar manner to the
Space Mapping technique [31]. Parallel computing has proven to be very successful for the GA
calculation, and a similar approach is currently being pursuing for the EGO method. The GA
is a heuristic search with no provable convergence and the use of a provable global optimisa-
tion method within the parallel function evaluation environment may improve the optimisation
result.
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