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Abstract 
 
The beam finite element matrices are formed with the assumption that it is subjected to large 
deflection with small strain and rotation. The finite element equations are represented in 
Hamiltonian form and are solved by the appropriate symplectic integration scheme. The 
induced axial forces are not averaged and the first second and third order stiffness matrices 
are formed to incorporate the effect of axial force. All conservative laws are observed during 
the numerical integration. The response of the beam is studied for free and forced vibration 
with un-damping cases. 

1. INTRODUCTION 

The geometrically non-linear or large amplitude vibrations of beam are a challenging 
field.  Approximate analytical methods and numerical methods such as finite difference 
methods, finite element methods are used for solving these problems. The large deflections of 
beam make their response non-linear. In this article large deflection with small rotation of 
beams are considered for response analysis.  The beam finite element matrices in Lagrangian 
form are developed for the purpose. Then the beam finite element equations in lagrangian 
form are expressed in Hamiltonian form to be solved by a suitable symplectic integration 
scheme. The equations of motion are linearised to obtain the finite element formulation. The 
errors caused by the finite element discretization are reduced to a large extent by increased 
number of iterations. The geometrical stiffness matrix is reformed in every incremental step to 
cope with the non-linear response of the beam.  The direct integration method like Jacobian 
method is used to solve these problems but is non-symplectic. The result obtained from the 
solution using non-symplectic schemes may be different from the actual response of the 
system. Jacobian of the time transformation differs slightly from unity, thereby showing the 
system to damp artificially. In this article a finite element formulation is built directly by 
integrating the Lagrangian in a non-linear sense without averaging the axial forces. The 
second and third order stiffness matrices are derived which are independent of nodal 
displacement. The Hamiltonian and the corresponding Hamilton’s equation are formulated for 
free vibration problems. For undamped forced vibrations the Hamiltonian and the 
corresponding Hamilton’s equation are extended.  
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2. LAGRANGIAN  
 

The axial strain  and the curvature ε Γ  for an initially straight Euler-Bernoulli beam 
undergoing large displacement with small strain and rotation, are given by 
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where u(x, t) and w(x, t) are the axial and transverse displacements, respectively. The axial 
resultant force S and the bending moment M may be written as  
S = ,   respectively  εEA Γ= EIM
where E  A and I are Young’s modulus, cross-sectional area and moment of inertia of the 
cross-section respectively. 
 The corresponding un-damped Lagrangian is  
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where  is density of material t is time ρ ( )t,xFu and ( )t,xFw  are the axial and transverse 
loading, respectively. This formulation is different from the others as the induced axial forces 
S are not averaged, instead are function of displacements. 

3. FINITE ELEMENT DISCRETIZATION 

Let us consider an initially straight beam of uniform cross-section. The displacement 
functions u(x, t) and w(x, t) are interpolated by their nodal values u(t), w(t), respectively, so 
that u(x, t) =[n(x)]{u(t)}, 
w(x, t) = [N(x)]{w(t)} where [ ]ξξ−= ,1)]x(n[  and 
 ( ) ( ) ]l,23,l12,231[)]x(N[ 2332232 ξ−ξξ−ξ+ξ−ξξξ+ξ−=  are shape functions where l/x=ξ  
After integration, the Lagrangian of equation (1) becomes 
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where for element e with node i and j, 
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Where [Q] is given by 
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[Q] has been obtained as given below 
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It is clear from the above expressions that [ ]euK and [ ]ewK are first order, [ ] s 

second order and [ is the third order stiffness matrix. Similarly 

e
uqK i

]eqK { }e
qw  which is a quadratic 

function and { is the second order displacement. The stiffness matrices are independent of 
the nodal displacements.  

}ew

4. FINITE ELEMENT EQUATIONS  

The finite element equations are obtained by applying the Hamilton principle to the 
Lagrangian given by equation (2) 
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First, let us consider the autonomous Hamiltonian system, where is differentiation of 
with respect to w. For damped forced vibration problems, the finite element equations are 

obtained by adding the damping terms as follows. 

w,qw

qw

5. SYMPLECTIC INTEGRATION SCHEMES  

The Lagrangian formulation is more popular than the Hamiltonian due to it’s direct 
application for solution of problems. But the Hamiltonian methods are advantageous if the 
resulting equations are symplectic in structure which will be very convenient in theoretical 
and numerical studies. Ruth [1] have developed some symplectic numerical methods for the 
Hamiltonian system. 
The given system may be transformed to Hamiltonian system as written below. 
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where ( )t,q...,q,q,p....p,pH n21n,21  is Hamiltonian energy for inertial frame of reference. 
For autonomous Hamiltonian system we can have the following. 

,Rz,
z
HJz n2∈
∂
∂

=&                                                                                                                (5) 

3 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

where                                                                                                                (6) ⎥
⎦

⎤
⎢
⎣

⎡ −
=

01
10

J

and  ni;qz,pz i1iii ≤== +

it’s phase flow is denoted as ( ) ( ) ( ),t,zgt,zgzg H
t ==  being a one parameter group of 

canonical maps. i.e. 
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and if  is taken as an initial condition, then 0z ( ) ( )0
t zgtz =  is the solution of (5) with the 

initial value .Different symplectic integration schemes to the system (5) have been 
constructed [1-4]. All the symplectic schemes for Hamiltonian systems preserve all the linear 
conservative quantities. Moreover, the time-centred symplectic scheme, which is an implicit 
scheme, preserves all the linear and quadratic conservative quantities. Let us consider the 
first- and second-order canonical difference schemes to eqns (5) 
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where h is the time step. These schemes are explicit with respect to the variable q. In general, 
the Hamiltonian for non-linear vibration problems of structures is separable, i.e. H = U(p) + 
V(q), where U(p) is quadratic in p, representing the kinetic energy. Thus, in this case, eqns (7) 
and (8) are a set of linear equation in p. The time-centered Euler scheme [1] for eqns (5) is  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+=

+
+

2
zzhJHzz

k1k

z
k1k  

The scheme may be written as 
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which is an implicit second-order scheme. Thus the scheme (9) requires iterations. 
For non-autonomous Hamiltonian systems we regard the time t as an additional dependent 
variable. That is, letting = t can choose a parameter 1nq + τ as a new independent variable. It is 
well known that 

Hp 1n −=+  
which has a unit of energy, is the generalized momentum conjugate to the time t. For this 
special choice, the function ( ) ( )zHpwK 1n += +  with  

( T
n21n21 H,p...,p,p,t,q....,q,qw −= ) will take the place of the Hamiltonian function H. 
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6. SEPARABLE HAMILTONIAN  

If the Hamiltonian can be expressed as H=U(p)+V(q,t), then it is a separable Hamiltonian. 
The third-order three-step scheme for the above Hamiltonian is given below 
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where cs and ds must satisfy the following equations 
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Table 1. Convergence of linear and non-linear frequency parameters 

For hinged-hinged fixed-hinged fixed-fixed beams at 1/Amax =ζ  
 Hinged-hinged Fixed-hinged Fixed-fixed 

No of elements 2 4 8 2 4 8 2 4 8 

Lλ  98.18 97.46 97.41 242.14 238.03 237.74 516.93 501.89 500.65 

NLλ  124.20 117.19 116.01 277.92 265.93 262.50 549.16 532.52 525.14 

 linear frequency parameter= Lλ EI
lA 42

0ωρ
NL λ  non-linear frequency parameter= 

EI
lA 42ωρ

 

 
There are five equations for six unknowns; thus, there are many solutions. One particularly 
simple solution is obtained by setting 1d3 =  

1d,3/2d,3/2d
24/1c,4/3c,24/7c

321
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The symplectic integration schemes mentioned above are used to solve Hamiltonian 
equations. For the non-linear problems, it is better to use explicit symplectic integration 
schemes than implicit schemes. One reason is the simplicity of computation and the other 
reason is the convenience to study its mapping ( )n1n zfz =+ . Explicit schemes, which do not 
require iteration procedures, suffer only the rounding error. Thus, the explicit symplectic 
integration schemes will preserve the symplectic structure better than the implicit symplectic 
integration schemes. Of course, from the viewpoint of computational stability, implicit 
schemes are better. By increasing the number of iterations, implicit symplectic integration 
schemes can also preserve the symplectic structure accurately. In practical implementation, 
variable time steps may be used for guaranteeing the stability of computation. On the other 
hand, from the numerical examples below, we know that the time-centered Euler scheme is 
better than the other schemes mentioned above.  
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Hamiltonian Equations 
The Hamiltonian of the Lagrangian can be given as follows 
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where { } [ ]{ } { } [ ]{ }wMpuMp wwuu && == ,  are the momenta. 
The resulting Hamilton’s equation can be given as 
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7. NUMERICAL EXAMPLES  

The finite element equations are solved by different integration schemes for the case of free 
vibrations, and un-damped forced vibrations. A uniform straight beam with immovable edges 
is considered for the purpose with hinged-hinged, fixed-hinged, and fixed-fixed boundary 
conditions. 

7.1 Free vibrations  

The free vibration of the beam for different end conditions is investigated first.  The non-
linear natural frequencies are dependent on the amplitude of vibration. The frequency ratios 
(non-linear/linear) are tabulated in Tables 1 and 2, where  is the amplitude of the 
midpoint of the beam, 

maxA
ζ  is the radius of gyration. Table 1 shows the convergence of the linear 

and non-linear frequencies for 1/Amax =ζ with different numbers of finite elements. Table 2 
presents the frequency ratios at various amplitudes for hinged-hinged, fixed-hinged and fixed-
fixed boundary conditions with four elements. The present results are obtained using the first-
order and the third-order three-step symplectic integration schemes with equal time steps, 
respectively. The results of ref [1] are also presented in Table 2.  
 

Table 2. Frequency ratios at various amplitude ratios for a uniform beam for 
hinged-hinged, fixed-hinged, fixed-fixed end conditions. 

 Hinged-hinged Fixed-hinged Fixed-fixed 
ζ/Amax  Present Ref[1] present Ref[1] present Ref[1] 

0.2 1.0038 1.0040 1.0021 1.0023 1.0014 1.0014 
0.4 1.0162 1.0165 1.0100 1.0100 1.0051 1.0051 
0.6 1.0035 1.0036 1.0215 1.0210 1.0108 1.0108 
0.8 1.063 1.063 1.0369 I .0367 1.0201 1.020 
1.0 1.069 1.069 1.0570 1.0570 1.0301 1.0301 
2.0 1.3432 1.3431 1.2077 1.2077 1.1175 1.1175 
3.0 1.673 1.673 1.4156 1.4156 1.3219 1.3218 
4.0 2.0392 2.0392 1.6580 1.6580 1.3911 1.3911 
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Figure 1 [ The free vibration of an undamped beam[ left fig. Response using one mode, right fig. 
response using two modes] 
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7.2 Undamped forced vibrations 
 
A clamped-clamped beam under a static concentrated load of 284.3919 N acting at the mid-
span at time t=0 was considered. The modulus of elasticity is , the mass 
density is  the length is l = 50.8 cm and the cross-section is 2.54 x 0.3175 
cm. Because of symmetry of loading only one-half of the beam was modeled by six finite 
elements. The time history of the mid-span deflection computed by various schemes: first 
order, second order, third order and time-centred schemes, are shown in Figs 2(a-d), 
respectively. For the comparison of different schemes, we use a time step, . From 
Fig. 2 it is clear that the results obtained using different schemes are almost identical. This 
problem has been studied by many investigators. Mondkar and Powell [5] used five eight-
node plane stress elements to model one-half of the beam. Yang and Saigal [6] used six beam 
elements with . McNamara [7] used five beam bending elements based on a 
central-difference operator with 

m/kN1007.2 8×
33 cm/kg1071.2 −×

s0.3t μ=Δ

s10,5t μ=Δ
s0.5t μ=Δ  The maximum displacement and the period of the 

first cycle were 0.02286 m and s2884μ in [7], 0.019558m and  in [5,6] and 
0.019456m and 

s2300μ
s2151μ in this study. In addition, the response of the beam was studied only 

for first  in the existing references. s5000μ
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Figure.2  Mid-span displacement of example 2 from 0 to 35,000 sμ  using different schemes.  
(a) The first-order scheme with s3t μ=Δ  . (b) The second-order scheme with . s3t μ=Δ
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Figure 2. Mid-span displacement for example 2 from 0 to 35,000 sμ  using different schemes. 

(c) The third-order three-step scheme with s3t μ=Δ  (d) The time-centred Euler scheme with s3t μ=Δ  

8. CONCLUSIONS 

The second-order and the third-order stiffness matrices are introduced for the geometrical 
non-linear finite element analysis of beams. An accurate formulation of non-linear finite 
elements is derived. The accuracy of the equations provides a good foundation for studying 
non-linear vibrations, chaos and dynamic bifurcation of structures. Symplectic integration 
methods have been successfully used to solve the Hamilton’s equations. The results obtained 
for the three examples show that the present method is efficient for the dynamic analysis of 
beam problems with large deflections. The ideas may be extended to the problems of plates 
and shells. Thus, the procedure provides a good prospect to non-linear finite element static 
and dynamic analysis of solids and structures. 
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