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Abstract 
 
This paper presents the reliability-based optimization of the location and feedback gains of a 
piezoelectric active bar in a closed loop control system for smart truss structures with random 
parameters under non-stationary random excitation. The mathematical model with reliability 
constraints on the mean square value of the structural random dynamic displacement and stress 
response is developed based on maximization of dissipation energy due to the control action. 
The randomness of the structural physical materials and geometry are included in the analysis, 
and the applied forces are considered as non-stationary random excitation. Numerical examples 
of smart truss structures are presented to demonstrate the active control model. 

1. INTRODUCTION 

A smart truss structure is a self-adaptive structure that is utilized in some important fields [1]. In 
this kind of truss structure, a piezoelectric (PZT) bar is the active structural active member used 
to suppress mechanical vibrations, and is not only a sensor but also an actuator. Optimal 
placement of the PZT active bar is an important factor in the process of the structural design 
phase, and its shape as is vibration control. The location of active bars in the smart truss 
structure directly affects the performance of active vibration control. The field of smart or 
intelligent structures has raised much interest over the past decade [1]. Recently, there has been 
much work published on the optimization of smart structures [2-4]. 

To date, the majority of modelling on optimization of active vibration control using 
piezoelectric smart structures has used deterministic models to model the dynamic response of 
smart structures, and optimal placement of the PZT actuators and sensors. In these cases, the 
structural parameters, applied loads and control forces are regarded as known parameters. 
However, deterministic models of the dynamic response associated with smart structures 
cannot reflect the influence of the randomness of the structural parameters. The dynamic 
response of an engineering structure can be sensitive to randomness in its parameters arising 
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from variability in its geometric or material parameters, or randomness resulting from the 
assembly process and manufacturing tolerances. In addition, applied loads can be random 
process forces, such as wind, earthquakes and blast shock. The problem of stochastic smart 
structures subject to random applied excitation is of great significance in realistic engineering 
applications. 

In this paper, optimization of the location of the active bar and feedback gain in 
piezoelectric smart truss structures with random parameters are investigated. The randomness 
of the structural materials, geometry and damping are simultaneously considered. The applied 
force is taken as a non-stationary random excitation. The performance function due to the 
control action is based on maximization of the dissipation energy. To formulate the optimal 
control problem, the algorithm for a linear quadratic regulator with output feedback has been 
employed in this paper. An optimal mathematical model with reliability constraints on the 
mean square value of structural dynamic displacement and stress response is developed. 
Numerical examples of stochastic smart truss structures are given and some useful conclusions 
are obtained. 

2. OPTIMAL MATHEMATICAL MODEL 

Following the finite element formulation, the equation of motion for a smart structure is given 
by 

 
[ ]{ } [ ]{ } [ ]{ } }{ [ ] }{ )()()()()()( tFBtFtvtuKtuCtuM C+=++ &&&                        (1) 

 
where [ ]M , [ ]C  and [ ]K  are the mass, damping and stiffness matrices respectively. { })(tu , 
{ })(tu&  and { })(tu&&  are displacement, velocity and acceleration vectors respectively. }{ )(tF  is a 
stationary random load force vector, )(tv  denotes the non-stationary characteristics of the 
random force }{ )(tF . }{ )(tFC  is the control force vector. The matrix [ ]B  defines the location of 
the active bar on the smart structure under consideration. In the following analysis, Wilson’s 
damping hypothesis is adopted. Using the modal expansion{ } [ ]{ })()( tztu φ= , the equation of 
motion takes the form 
  

[ ]{ } [ ]{ } [ ]{ } [ ] }{ [ ] [ ] }{ )()()( )( )( tFBtFtztzDtzI C
TT φφ +=Ω++ &&&                  (2) 

 
where [ ] [ ]jjdiagD ωζ2= , [ ] [ ]2

jdiag ω=Ω  for nj K1= . [ ] [ ]nφφφ L1=  is the normal modal 
matrix of the structure, and jω , jζ  are the jth order natural frequency and damping ratio 
respectively.  

For active control of the truss bar, a velocity feedback control law is considered. Since 
each active bar can be considered as a collocated actuator/sensor pair, the output matrix is the 
transpose of the input matrix. The output vector )(tY  and control force vector }{ )(tFC  can be 
respectively expressed as 

 
[ ] [ ] }{ )()( tzBtY T &φ=                                                     (3) 

 
 } [ ] [ ][ ]{ [ ] }{ )()()( tzBGtYGtF T

C &φ−=−=                                    (4) 
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where [ ] { }jgdiagG =  is the gain matrix [5]. Substituting equation (4) into equation (2) yields 
the equation of the closed-loop system 

 
[ ]{ } [ ] [ ] [ ][ ][ ] [ ] { } [ ]{ } [ ] }{ )()( )()BG B()( T tFtztzDtzI TT φφφ =Ω+++ &&&                 (5) 

 
In the state-space representation, the equation of motion becomes 

 

}{ [ ] }{ )()( tuAtu =& , }{ }{ Ttztzu )()( &= ,  [ ] [ ]
[ ] [ ] [ ] [ ][ ][ ] [ ]⎥⎦

⎤
⎢
⎣

⎡
+−Ω−

=
φφ TT BGBD

I
A

(
0

       (6) 

                    
 
Both the optimal location of the active bar and the optimal gain of the closed-loop control 
system are determined such that the total energy dissipated in the system is maximized. The 
total energy dissipated in the system is taken as the performance criterion and it can be 
expressed as 

 

}{ [ ] [ ] [ ][ ][ ] [ ] }{ dttzBGBDtzJ TTT )()()(
0

&& φφ += ∫
∞

                                  (7) 

 
Equation (7) can also be expressed as 

 

}{ [ ] [ ] [ ] }{ )0()0(
0

udteQeuJ tAtAT T

∫
∞

=                                           (8)  

 

where [ ] [ ]
[ ]⎥⎦
⎤

⎢
⎣

⎡ Ω
=

I
Q

0
0

. Making use of the method described in ref. [5], the performance 

function can be expressed as 
 

[ ]WtrJ =                                                                (9) 
 

where the matrix [ ]W  can be obtained by solving the following equation 
 

[ ] [ ] [ ][ ] [ ]QAWWA T =+                                                  (10) 
 

For the smart truss structure with random parameters, and where the load is a 
non-stationary random excitation, an optimization program is written with reliability 
constraints that implements the following steps. For a fixed gain ( jgg = ), the optimal location 
of the active bar (that is, the optimal [ ]B  matrix) is obtained such that the total energy 
dissipated, J is maximized. After the optimal placement of the active bar is determined, the 
feedback gain is then optimized. This is achieved by calculating the mean square displacement 
for each kth degree of freedom and mean square dynamic stress for each eth element. Reliability 
constraints are placed on the mean square displacement and stress respectively as follows: 
 

{ } 0022*
2 ≤≥−−

∗
eerPR

e
σσψ

ψψ
σ

,       me ...,,2,1=                               (11) 
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[ ] [ ] [ ] [ ]** , GGBB <⊂                                                   (13) 

 
where [ ]B  and [ ]G  are the design variables. *

2  
e

R
σψ

 and *
2
uk

Rψ  are given values of reliability of 

the mean square stress and displacement responses, respectively. Pr{·} is the reliability 

obtained from the actual calculation. ∗2
eσψ  and 

∗2
ukψ  are given limit values of the mean square 

stress and displacement responses, respectively. In this model, [ ]B , [ ]G , *
2  
e

R
σψ

, *
2
uk

Rψ , Pr{·}, 
∗2

eσψ and 
∗2

ukψ  can be random variables or deterministic values. 2
eσψ  and 2

ukψ  are the mean 
square dynamic stress of the eth element, and displacement of the kth degree of freedom, 
respectively. [ ]*B  and [ ]*G  are the upper bounds of [ ]B  and [ ]G  respectively.  

3. SMART STRUCTURAL NON-STATIONARY RANDOM RESPONSE 

Suppose that there are m  elements in the smart truss structure under consideration. In the 
structure, any element can be taken as either a passive or active bar, where a PZT bar is used as 
the active bar. The stiffness matrix [ ]K  and the mass matrix [ ]M  of the smart truss structures in 
global coordinates can be expressed as 

 

[ ] [ ] [ ] [ ][ ]}])()1([{ 33
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where θ  is a Boolean algebra value defined by the following: when θ =0, the mixed element is 
a PZT active element bar; when θ =1, the mixed element is a passive element bar. [ ]eK  and 
[ ]eM  are the stiffness matrix and mass matrix of the eth element, respectively. eρ , eA  and el  
are the density, cross-sectional area and length respectively of the eth passive bar element. C

eρ , 
C
eA  and C

el  are the density, cross-sectional area and length respectively of the eth active bar 
element. P

eE  is the Young’s modulus of the eth passive bar element. ec33 , ee33  and e33ε  are the 
Young’s modulus, piezoelectric force/electrical constant and dielectric constant respectively of 
the eth active bar element. [ ]I  is a 6th order identity matrix. [ ]G  is a 66×  matrix, where 

14411 == gg , 14114 −== gg  and other elements are zero. [ ]eT  is the transformation matrix that 

translates the local coordinates of the eth element to global coordinates, and [ ]TeT is its 
transpose.  

In the closed loop control system, since the control force }{ )(tFC  is determined by the 
applied force }{ )()( tFtv , these two variables have full positive correlation. Let 
 

}{ }{ [ ] }{ )()()()()( tFBtFtvtPtg C+=                                          (16) 
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Equation (1) can be re-written as 
 

[ ]{ } [ ]{ } [ ]{ } }{ )()()()()( tPtgtuKtuCtuM =++ &&&                                  (17) 
 

From equation (17) and by using the structural random vibration analytic theory [6], the mean 
square displacement of the kth degree of freedom can be expressed as 
 

[ ][ ] [ ] [ ][ ] T
kP

T
kuk dHtgStgH φωωφωφωφψ

rr
⋅⋅= ∗∞

∫ )()()()()( 210
2  nk ...,,2,1=       (18) 

 

where kφ
r

 is the kth line vector of the matrix [ ]φ . [ ])(ωH  is the frequency response function 
matrix of the structure and can be expressed as 

 

[ ] [ ])()( ωω jHdiagH = ,
ωωζωω

ω
jjj

j i
H

2
1)( 22 ⋅+−

= ( 1−=i )  nj ,,2,1 ⋅⋅⋅=    (19) 

    

The mean square value matrix of the eth element stress response [ ]2
eσψ  can be expressed as 

 
[ ] [ ][ ][ ] e

T
ueee EBBE 1
2

1
2 ψψσ =                           me ,,2,1 ⋅⋅⋅=       (20) 

 

where [ ]1B is the element strain matrix, [ ]2
ueψ  is the mean square value matrix of the 

displacement of the nodal point of the eth element, and eE  is the Young’s modulus of the eth 
element. 

4. NUMERICAL CHARACTERISTICS OF NON-STATIONARY RANDOM 
RESPONSE OF STOCHASTIC SMART TRUSS STRUCTURES 

The following parameters corresponding to jζ , eρ , eA , el , P
eE , C

eρ , C
eA , C

el  and ec33  are 
simultaneously considered as random variables. The randomness of physical parameters and 
geometrical dimensions will result in randomness of the matrices [ ]K  and [ ]M , and 
consequently the natural frequencies jω  and natural modal matrix [ ]φ . The mean value and 
standard deviation can be obtained by using the random factor method [7]. The randomness of 
the structural damping, natural frequencies, mode shapes and excitations will result in 
randomness in the structural dynamic responses of the closed loop control system, corresponding 
to the displacement and dynamic stress. From equation (18)  and (20), by means of the functional 
moment method of random variables and algebra synthesis method [8], the mean value and 
standard deviation of the mean square value of the structural dynamic displacement and stress 
response can be determined. 
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5. EXAMPLE 

A 20-bar planar smart truss structure shown in Figure 1 is used to illustrate the method. A 
ground level acceleration acts on the structure [8]. The material properties of the active and 
passive bars are given in Table 1.  
 
 

Table 1.  Intelligent truss structure physical parameters 

 Active bar (PZT-4) Passive bar (steel)
Mean value of mass density ρ  (kg/m3) 7600 7800 

Mean value of elastic modulus c33 (N/m2) 8.807× 1010 2.1× 1011 

Piezoelectric force/electric constant e33 (C/m2) 18.62 — 
Dielectric constant 33ε  (C/Vm) 5.92× 10-9 — 

Cross section area A (m2) 3.0× 10-4 3.0× 10-4 
 
In order to solve the optimal problem, two steps are adopted [5]. In the first step, the 

reliability constraints of dynamic stress and displacement are neglected, and the feedback gains 
are kept constant. Then, each element bar is taken as an active bar in turn and the corresponding 
performance function value is calculated. Based on the computational results for the dissipated 
energy, the optimal location of the active bar can be determined. In the second step, after the 
optimal placement of the active bar is obtained, the reliability constraints are imposed, and the 
optimization of feedback gain, that is, minimization of feedback gain will be developed. 

For the first step, and letting the closed loop control system feedback gains be 
50== jgg , each element bar is taken as active bar in turn; the corresponding performance 

function value is given in Table 2. 
 
 

Table 2.  The computational results of performance function (g=50). 

Element 1 2 3 4 5 6 7 8 9 10 
J 123.1 117.8 117.8 123.1 96.5 85.8 78.5 78.5 85.8 68.0 

Element 11 12 13 14 15 16 17 18 19 20 
J 71.2 60.0 60.0 71.2 58.3 44.3 36.8 36.8 44.3 31.2 

 
From Table 2, it can be seen that if the first or fourth element is used as the active bar, the 

active control performance of the smart truss structure is the best because the performance 
metric of energy dissipated is maximized. The effect of active vibration control of the smart 
truss structure is the worst if the 20th element is used as active bar. These results are not 
surprising since the control performance is the greatest when the active bar is closest to the 
primary ground excitation of the truss structure. 

In order to assess the control performance with the reliability constraints imposed and 
optimization of the feedback gain, the control results using the 20th and 1st elements as the 
active bar respectively are compared. The structural parameters (material properties, geometric 
dimensions, structural damping) and the limit values of the mean square stress and 
displacement, ∗2

eσψ  and 
∗2

ukψ , are all taken to be random variables, where 2000
2
=∗

eσψ
μ MPa2, 

000.3
2
=∗

ukψ
μ mm2 and ∗

2
e

R
σψ

= ∗
2
uk

R
ψ

=0.95. Values from both deterministic and random models 

are obtained. In the deterministic model (DM), the mean values of the random variables are 
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unity, and their standard deviations are zero. The optimal results for the feedback gains, and the 
mean displacement and stress responses are given in Table 3, where { }022

2 ≥−=
∗

eerPR
e

σσψ
ψψ

σ
 

and { }022
2 ≥−=

∗

ukukrPR
uk

ψψ
ψ

. In the random model (RM), the variation coefficients of all 

random variables are equal to 0.02. In addition, in order to verify our method, stationary 
random responses obtained using the Monte-Carlo simulation method (MCSM) are also 
presented in Table 3, in which 10000 simulations are used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. 20-bar planar smart truss structure (units: mm) 
 
 

Table 3. Computational results of the feedback gains (*dynamic analysis by the MCSM method) 

 1st element as an active bar 20th element as an active bar 
Design 

variables 
Original 

value DM RM Original 
value DM RM 

G 50 49.27 69.51 50 62.23 81.79 
*G   *69.57   *81.88 

2
eσψ

μ  1737.6 1999.7 1582.8 2179.3 1999.1 1582.5 
*

2
eσψ

μ    *1583.1   *1582.9 

2
ukψ

μ  2.7493 2.8454 2.3741 3.3079 2.8468 2.3739 
*

2
ukψ

μ    *2.3743   *2.3744 

2
e

R
σψ

  0.47 0.98  0.47 0.98 

2
uk

R
ψ  

 0.51 0.95  0.51 0.95 
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6. CONCLUSIONS 

The results from the method presented in this paper are in good agreement with results obtained 
from the Monte-Carlo simulation method. The optimal results obtained with deterministic 
model and the random model are different. The optimal results of the deterministic model fulfil 
the normal constraints, but the results can not fulfil the reliability constraints. 

 In order to attain the same effect of active vibration control for intelligent truss structure, 
different elements are utilized as active bar, the corresponding optimal results of feedback gain 
are remarkably different.  

The results of the example show that the areas of the system where the most energy is 
stored are the optimal location of an active bar in order to maximize its damping effect.  
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