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Abstract

A mathematical model is developed to calculate the transmission loss of a simply-supported
plate with an array of masses attached. Experimental tests were conducted and compared with
the theoretical predictions and showed that there was good agreement. The results showed that
the transmission loss of the plate can be improved by the addition of the masses, greater than
that which would be predicted from the ‘mass-law’ model.

1. INTRODUCTION

This paper describes a mathematical framework for the calculation of the transmission loss of
a plate with discrete masses attached. It is shown through both experimental results and theo-
retical predictions that the transmission loss of the plate can be improved by adding numerous
discrete masses to the plate. The transmission loss that can be achieved by the addition of the
discrete masses exceeds that would be obtained by merely ’smearing’ the added mass across the
plate, which is similar to increasing the thickness of the plate.

This publication provides an opportunity to correct some errors in a conference paper
on a similar topic. A mathematical model was presented by Howard [1] for the transmission
loss through a clamped plate with an array of discrete masses attached. The work presented in
the paper was a “work in progress" and presented some promising experimental results. The
mathematical model was not sufficiently accurate at the time, but did indicate similar trends as
compared with the experimental results. The work presented in this paper describes the trans-
mission loss of a simply supported plate with an array of discrete masses attached, including
the corrections to the previous erroneous mathematical model.

The author was unable to find papers describing the transmission loss of a rectangular
plate with an array of discrete masses attached. There are numerous papers describing the sound
radiation from plates with simply-supported conditions that include closed-form solutions, such
as Wallace [2], Lomas et.al. [3], Roussos [4]. Sound radiation from clamped edge conditions
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are less common and the author was unable to find in the research literature a closed-form so-
lution for the sound radiation from a clamped-plate. Most researchers use numerical integration
techniques to solve transmission loss problems to calculate the acoustic power radiated from
the plate.

2. MATHEMATICAL MODEL

This section describes a mathematical model to enable the calculation of the transmission loss
of a simply supported plate with an array of rigid masses attached at arbitrary locations on the
plate. The theoretical derivation presented in this paper is similar to the work by Roussos [4],
with the addition of the effects of the discrete masses, and extends the work by including the
derivation of the diffuse-field transmission-loss.

The mathematical derivation starts with the structural behaviour of a simply-supported
plate, and then includes the effect of translational and rotational inertia of discrete masses at-
tached to the plate. Next, the vibro-acoustic coupling of the plate is considered by considering
the pressure loading that occurs from an incident plane-wave striking the plate, and finally the
acoustic power that is radiated from the vibrating plate.

2.1. Equation of Motion of the Plate

The vibration response of a general structure can be written in terms of its modal responses as
[5]

ẅs + 2ηsẇs + ω2ws = Γs (1)

For the simply-supported plate under consideration here, the displacement w of the plate can be
written in terms of an infinite sum of its vibration modes multiplied by the modal participation
factor for each mode wm,n as

w(x, y) =
∞∑

m=1

∞∑
n=1

wm,n sin (mπx/Lx) sin (nπy/Ly) = wΨ (2)

where Lx, Ly are the lengths of the plate along the x and y axes, wm,n are the modal partic-
ipation factors, w is the corresponding vector of all the modal participation factors, Ψ is the
corresponding matrix of mode shapes, and a particular combination of m,n indices is called
the sth index where the resonance frequency of the m,n mode has been sorted into increasing
resonance frequencies. The resonance frequencies of a simply-supported plate ωm,n is given by

ω2
m,n = ω2

s =
Dπ4

ρh




(
m

Lx

)2

+

(
n

Ly

)2

 (3)

D =
Eh3

12(1− ν2)
(4)
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where D is the bending stiffness of the plate, E is the Young’s modulus, h is the thickness, ρ is
the density of the plate, ν is the Poisson’s ratio. The modal force Γs is given by

Γs =
1

ρhNs

∫ Lx

0

∫ Ly

0

[qzUzp + TxUzp + TyUzp] dydx (5)

where qz represent the vertical point force and Ti point moments applied along axes i = x, y

and are defined using the Dirac delta functions δ, as follows:

qzJ = FzJδ(x− xJ)δ(y − yJ)ejωt

TiJ = (MiJ/R2)δ(x− xJ)δ(y − yJ)ejωt
(6)

where Fz are the vertical forces and Mi moments applied on the plate in the directions, Uz is
the modal response in the vertical direction where Uzs = wΨ. The term ρhNs in Eq. (5) is the
modal mass of the structure Λs, where

Ns =

∫ Lx

0

∫ Ly

0

U2
zsdydx = LxLy/4 (7)

and hence the modal mass of a simply-supported plate is one-quarter of the mass of the plate.
By making use of the relationship

∫

ε

F (ε)
∂

∂ε
[δ(ε− ε∗)] dε =

∂F (ε∗)

∂ε
(8)

the expression for the modal force in Eq. (5) can be written as

Γs =
1

Λs

[
ΨFJ −

∂Ψ

∂y
MJx +

∂Ψ

∂x
MJy

]
(9)

It will be shown now that the partial differentials of the mode shape matrix in Eq. (9) are
equivalent to the mode shapes for the rotation of the plate. The rotations of the plate are given
by [6]

θs =
v

R
− 1

R

∂w

∂θ
(10)

θθ = − 1

R

∂w

∂s
(11)

which describe the partial differentials of the mode shapes Ψ along each of the translational
axes. Hence Eq. (9) can be written as

Γs =
1

Λs

(
ΨJFJ −ΨJθxMJx + ΨJθyMJy

)
(12)
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where ΨJθx and ΨJθy are the rotational mode shapes about the θx and θy axes respectively and
are given by

ΨJθx =
∂ΨJ

∂y
= sin (mπx/Lx) (nπ/Ly) cos (nπy/Ly) (13)

ΨJθy =
∂ΨJ

∂x
= (mπ/Lx) cos (mπx/Lx) sin (nπy/Ly) (14)

The impedance of the J th mass attached to the plate is included as translational and
rotational inertias as

FJ = ω2mJ (15)

MJθx = ω2JJθx (16)

MJθy = ω2JJθy (17)

where mJ is the mass of the block, JJθx , JJθy are the rotational inertias of the blocks along the
θx, θy axes, respectively.

2.2. Vibro-acoustic coupling of the plate

Roussos [4] describes a modal summation method to calculate the transmission loss of a simply-
supported plate, which provides a good framework to incorporate the effects of an array of
discrete masses attached to the plate. The method involves (1) calculating the modal force that is
applied to a plate due to an incident plane-wave striking the plate, (2) applying this modal force
to the plate and calculating the vibration response, as per the previous section, (3) calculating
the pressure, intensity, and radiated power from the plate, and (4) calculating the transmission
loss of the plate by using the ratio of the incident acoustic power striking the plate and the
radiated power from the plate.

Consider a plane wave incident on a simply supported plate as shown in Figure 1. The

a

b

P

x

yz

Figure 1. Plane wave striking a simply supported plate.

incoming pressure wave has an amplitude Pi and strikes the plate at angles θi normal to the
plate and φi in the plane of the plate. The pressure that is incident on the plate P (x, y) is given
by

P (x, y) = Pi exp[j(ωt− kx sin θi cos φi − ky sin θi sin φi)] (18)

and can be written in terms of a modal pressure that acts on the plate, which is calculated by
multiplying the pressure distribution by the mode shape matrix (and dividing by the modal mass
matrix Λ to be consistent with Eq. (1)) for the structure as ΨP (x, y)/Λ, which can be written
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as pm,n = LxLyY mY n where [2]

Y m = (mπ)
1− (−1)me−jα

(mπ)2 − α2
(19)

Y n = (nπ)
1− (−1)ne−jβ

(nπ)2 − β2
(20)

where α = kLx sin θ cos φ, β = kLy sin θ sin φ, k = ω/c is the wavenumber, ω is the frequency,
c is the speed of sound in air.

The transmitted pressure at a point remote from the plate due to the vibration of the plate
is calculated using the Rayleigh integral and can be written as [2, 7]

pt
m,n = −j(jωwp)kρc

ejkr

2πr
LxLyYmYn (21)

where [2]

Ym = (mπ)
1− (−1)me−jα

(mπ)2 − α2
(22)

Yn = (nπ)
1− (−1)ne−jβ

(nπ)2 − β2
(23)

and the transmitted intensity is calculated as I t = |∑m

∑
n pt

m,n|2/(2ρc). The total power Πt

that is radiated by the plate is calculated as the integral of the intensity over an imaginary far-
field hemisphere as

Πt =

∫ 2π

φt=0

∫ π/2

θt=0

I tr2 sin θtdθdφ (24)

The power that is incident on the plate is given by

Πi = (|Pi|2LxLy cos θi)/(2ρc) (25)

Finally, the transmission loss TL for a plane wave striking the plate is given by

TL = 10 log10(τ(θi, φi)) = 10 log10(Π
i/Πt) (26)

A diffuse field is characterised by an infinite number of uncorrelated plane-waves. The
sound field inside the reverberation chamber used in the experimental part of the work con-
ducted here is assumed to be a diffuse field. The transmission loss for a diffuse field is calculated
as [8]

TLdiffuse =

∫ 2π

0

∫ π/2

0
τ(θi, φi) sin θi cos θi dθidφi∫ 2π

0

∫ π/2

0
sin θi cos θi dθidφi

=

∫ 2π

0

∫ π/2

0
τ(θi, φi) sin 2θi dθidφi

2π
(27)
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3. EXPERIMENT

The transmission loss of a clamped aluminium plate was experimentally measured. The plate
had the properties described in Table 1.

Figure 2(a) and (b) show a picture of an aluminium plate installed in the transmission loss
test facility at the University of Adelaide, and a close-up picture of the rigid-blocks attached to
the plate with ‘super-glue’, respectively. Forty-nine rigid-blocks were cut from bar-stock such
that they had masses as shown in Figure 3. The blocks were arranged on the plate as shown
in Figure 2(c), such that the lightest mass (block 1) was located in the top left corner and the
heaviest mass (block 49) located in the bottom right corner. The purpose of this experiment
was not to determine an optimum arrangement for the blocks, but to compare the theoretical
predictions with experimental results.

Table 1. Geometry of the plate

Width Lx 1.0 m
Height Ly 1.5 m
Thickness h 0.0015 m
Density ρ 2700 kg/m3

Young’s Modulus E 70 GPa
Poisson’s ratio ν 0.33 No units
Loss factor η 0.01 No units

Figure 2. (a) picture of the plate installed in the transmission loss test facility, (b) close-up picture of the
rigid blocks attached to the plate, (c) arrangement of the masses on the plate.

Figure 4(a) shows the transmission loss of the plate for the experimental results and the-
oretical predictions based on Sewell’s finite plate theory [7, 9] and the model presented here,
when no masses were attached to the plate. The results show that there good agreement between
the Sewell’s theory for the finite plate and experiment. It can be seen that the modal method has
poor agreement above approximately 1000Hz, which is caused by including only 2000 struc-
tural modes in the analysis, up to a frequency of about 5000Hz. Generally, modal summation
methods require inclusion of modes two octaves higher than the frequency range of interest.

Figure 4(b) shows the transmission loss of the plate with and without the masses for the
modal method described here and the experimental results. The figure shows that the experimen-
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Figure 3. Masses of the 49 blocks.

tal results of the plate with the masses attached has greater transmission loss than the bare plate
over the frequency range from 125-400Hz. The theoretical results also indicate improvement in
the transmission loss over the frequency range from 100-300Hz.
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Figure 4. (a) Transmission loss of the plate for the modal method, Sewell, and experimental results; (b)
Modal method and experimental results with and without masses.

Figure 5(a) shows the transmission loss of the plate predicted using Sewell’s theory for
the thickness of the plate used in the experiment, a plate of equivalent thickness (1.79mm) had
the mass of the rigid blocks been smeared across the plate, and the experimental results of the
transmission loss of the plate with and without the masses attached. The results show that the
experimentally measured transmission loss of the plate with the masses attached is greater than
the theoretical predictions for a thicker plate.

Figure 5(b) shows the predicted and measured improvement in the transmission loss due
to the addition of the rigid masses, which is calculated as the transmission loss with the masses
attached minus the transmission loss without the masses attached. The figure shows that there
is good agreement between theoretical and experimental results.

4. CONCLUSIONS

A theoretical model was developed to enable the prediction of the transmission loss of a simply-
supported plate with rigid masses attached. Theoretical predictions were made and compared
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Figure 5. (a) Transmission loss of the plate; (b) Improvement in transmission loss.

with experimental results. It was found that the effect of the masses increased the TL of the
plate, greater than that which would have been achieved if the added mass from the rigid blocks
had been smeared across the plate, which would have the effect of increasing the thickness of the
plate. Similar work to material presented in this paper was presented at an earlier conference [1],
however there were a number of mistakes with the theoretical model that have been corrected
in this paper.

Future work will be done to develop a theoretical model to predict the transmission loss of
a plate with an array of vibration absorbers attached, which will be compared with experimental
measurements. Theoretical models have been developed for fuzzy structures that comprise a
large number of vibration absorbers attached to a master structure [10].
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