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Abstract 
 
This work investigates parametric instabilities of in-plane bending vibrations of a thin elastic 
ring subject to forces from discrete rotating springs of arbitrary number, spacing, and orientation. 
Several configurations are examined, including systems with symmetric and asymmetric 
circumferential spring spacing. The method of multiple scales is applied to analytically identify 
instability boundaries as closed-form expressions, and two different numerical approaches are 
used to verify these results. The effects of different system parameters on the instability 
boundaries are studied analytically: the bending stiffness of the ring, the number of springs, and 
their stiffness, location, orientation and rotation speed. For several cases, well-defined properties 
for the occurrence or suppression of instabilities are obtained as simple relations in the system 
parameters. 
 

1 INTRODUCTION 
 
The present work addresses parametric excitation of bending vibrations in a stationary, thin ring 
subjected to forces from rotating springs. The motivation is from planetary gears, which are 
commonly used in automotive transmissions, helicopters, aircrafts and wind turbines. Planetary 
gear dynamics have historically been analyzed using lumped-parameter models that take the 
ring, planets, carrier and the sun as rigid bodies and the gear tooth meshes as springs. Recent 
studies, however, indicate that the deformable nature of the gear bodies, especially a thin ring 
gear, must be incorporated to accurately model the mechanics. Bending vibrations of the ring are 
parametrically excited by forces from the moving springs (ring-planet meshes), causing 
instability under certain conditions. 
 The bending vibrations of rings have been extensively studied analytically and through 
experiments [1-9]. However, little work on the vibration of rings subject to moving loads is 



found. Huang and Soedel [10, 11] presented closed-form solutions for the forced vibration of 
rotating rings subjected to harmonic and periodic point forces and spatially distributed forces. 
They compared those results with the inverted problem of a stationary ring with a moving point 
force. Metrikine and Tochilin [12] studied the vibrations of an elastic ring with a time-varying, 
moving point force to model train wheels. There seems to be no prior work on the vibration of 
rings subjected to forces from moving springs.  A ring subjected to moving springs manifests as 
a parametrically excited system because the stiffness operator of the governing equation changes 
as the spring locations change. In this work, assuming that the moving spring stiffnesses are 
small compared to the bending stiffness of the ring, perturbation methods are employed to 
analytically identify parametric instability boundaries as closed-form expressions. 
 

2 PROBLEM FORMULATION 
 
Figure 1a shows a stationary, thin ring of uniform cross-section with mean radius  subject to 
forces at its centroidal surface from 

r
M  multiple spring-sets, 1, 2,...,j M! . Each spring-set 

consists of two springs of constant stiffness  and  oriented in mutually perpendicular 
directions. The orientation angle 

1 jk 2 jk

j"  ( 0 j 2" #$ % ) is the angle between the spring  and the 
radial direction. The spring-sets are arbitrarily spaced so that 

2 jk

j&  ( 0 2j& #$ % ) is the angular 

coordinate of the thj  spring-set measured from fixed  at initial time 1E 0t ! . The above system 
describes the most general case of discrete spring forces on a stationary ring. The spring-sets 
rotate around the ring with a constant angular speed sp' . As they rotate, the orientation angles 

j"  and the relative angular spacing ( 1j j& & (( ) between any two adjacent spring-sets do not 
change. Referring to Figure 1b, )  is the angular coordinate of any point on the ring in the inertial 
reference frame , and 1 2OE E *  is the angular coordinate of the same point in the rotating spring-
fixed reference frame . The angular coordinates of a material point on the ring are related 
by 

1 2Oe e

spt) *! +' . 
 Only in-plane bending vibrations of the ring are considered in this work. Using 
inextensibility of the ring centroidal axis and applying Hamilton’s principle, the equation for the 
tangential displacement  is obtained in nondimensional form as [13] û
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Figure 1 (a) Rotating ring on multiple rotating spring-sets. (b) Definition of reference frames. 
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Here, E  is the Young’s modulus, A  is the cross-sectional area and =  is the density of the ring. 
The important nondimensional parameters are 0 , which represents the ratio of the stiffness of 
the spring-sets to the bending stiffness  of the ring, and the nondimensional spring rotation 
speed 

bk

spv . The time-varying spring forces parametrically excite the system as the angular 
locations of the spring-sets changes periodically. Parametric instabilities occur for particular 
values of the magnitude (0 ) and frequency ( spv ) of the time-varying excitation. Under the 
assumption that  0  is a small quantity (stiffness of all the springs are of the same order and small 
compared to the bending stiffness of the ring), perturbation methods are used to obtain closed-
form approximations for the regions of parametric instability in the spv -0  plane. 
 

3 PARAMETRIC INSTABILITY ANALYSIS 
 
To capture principal and combination instabilities, a two-term Galerkin discretization is applied 
to (1) using the expansion , where  represents the complex 
conjugate of all preceding terms with  to eliminate rigid body motion. Substituting into 

( , ) ( ) ( )in im
n mu e e) )) 2 > 2 > 2! + cc+ cc

, 2m n ?
(1), and forming the inner product of the resulting equation with each of the basis functions 
yields the coupled equations 
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where  and  depend on the spring-set parameters, and nmG nmH np  represents the nondimensional 
natural frequency for the bending vibrations of a free ring in the  nodal diameter mode (n ine )D ). 
Although the only excitation frequency in (1) is spv , Galerkin discretization to the modal 
coordinates in (3) results in the two excitation frequencies ( ) spm n v+  and ( ) spm n v( . The ( )O 0  
terms in (3) arise from the projection onto the  nodal diameter mode of the force the rotating 
springs exert when the ring deflects in the  nodal diameter mode. Such a projection results in 
forces varying with the modulated frequencies (

m
n

) spm n v+  and ( ) spm n v( . Therefore, the system  
(3) may be viewed as having the two different excitation frequencies ( ) spm n v+  and ( ) spm n v( . 
 Parametric instabilities arise when the nondimensional spring rotation speed spv  is close to 
particular combinations of the free ring natural frequencies mp  and np . Application of the 
method of multiple scales [13] shows that terms leading to resonant response (secular terms) may 
arise when ( ) sp mm n v p pD E + n , which are conditions for summation type combination 
instabilities of the first (plus sign: m n+ ) and second (minus sign: ) kind, or when m n(
( ) sp mm n v p pD E ( n , which are difference type combination instabilities of the first and second 

kind. Principal instability corresponding to the  mode is obtained with , giving thn m n!
spnv pE n . (In arriving at these expressions, m  and  are assumed without loss of 

generality.) 
n? 0spv ?

 Considering the parametric instability when ( ) sp mm n v p pn+ E + , let 
ˆ( ) sp m nm n v p p 0F+ ! + +  where F̂  is the detuning parameter. Elimination of terms leading to 

unbounded, aperiodic response in (3) yields the expression for summation combination 
instability boundaries of the first kind as 
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and the  mode principal instability boundaries are given by thn ˆ(2 ) / 2sp nv p n0F! + . Considering 
the parametric instability when ( ) sp mm n v p pn( E + , let ( ) sp m nm n v p p 0F( ! + + ! , and the 
summation combination instability boundaries of the second kind are similarly obtained as 
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 It can be shown mathematically that difference type instabilities when ( ) sp mm n v p pD E ( n  
cannot occur because such a condition yields complex solutions for the detuning parameter. 
 Numerical verification of the analytical solution is performed using two approaches. In 
the first method, Galerkin discretization of (1) with basis functions as ine )D  yields a time-varying 
state matrix form ( ) ( ) ( )2 2 2!x P x"  with period 2 / spT v#! . Floquet’s theorem is applied to 
obtain the regions of instability in the spv -0  parameter plane. This method is computationally 
intensive because of the numerical time integration, especially for small spv  and so long period 

.  Alternatively, the system may be analyzed in a spring-fixed reference frame which allows a 
computationally efficient evaluation of system stability. In this reference frame, the governing 
equation attains a time-invariant state matrix form 

T

( ) ( )2 2!x Qx"  and the system stability is 
dictated by the real part of the eigenvalues of Q . By computing Q  and its eigenvalues for 
ranges of 0  and spv  (or other parameters), the regions of instability are obtained [13]. 
 

4 RESULTS AND DISCUSSION 
 
The analytical and numerical results for the stability boundaries are plotted in the spv -0  plane. 
Figure 2a shows these results for the case of one radial rotating spring. The analytical stability 
boundaries are obtained using (5) and (6) considering the first three bending modes, namely, 
modes with 2, 3 and 4 nodal diameters. The numerical instability regions are also computed 
taking the first three modes (starting with 2n ! ) to discretize the tangential displacement. The 
agreement between the analytical and numerical results is evident, even for relatively large 
values of the spring stiffness to bending stiffness ratio 0 . Both numerical methods yield the 
same instability regions. 
 
4.1 Effect of number of spring-sets, symmetry and asymmetry 
The width of the parametric instability regions are governed by Ĥ  and H!  defined in (5) and (6), 
and instabilities appear only if  or Ĥ H!  are non-zero. When all the spring-sets are identical with 
the same individual spring stiffnesses and orientation angles, and when the spring-sets are 
equally spaced, then  is non-zero only when the nodal diameters  and  are related to the 
total number of spring-sets 

Ĥ m n
M  by m n sM+ ! , and H!  is non-zero only when  where 

[13]. Hence, For the case of identical and equally spaced spring-sets (referred to as 
the symmetric case), symmetry of the system suppresses many principal and combination 
instabilities. An example with three radial springs is presented considering the 2, 3 and 4 nodal 
diameter modes. The only instabilities that appear in the symmetric case (

m n sM( !
1,2,3,...s !

Figure 2b) are principal 
instability due to the 3 nodal diameter mode, and combination instability of the first kind from 
interaction of the 2 and 4 nodal diameter modes. In the asymmetric cases of identical, unequally 
spaced spring-sets (Figure 2c), or non-identical, equally spaced spring-sets (Figure 2d), all 
possible instabilities occur. 
 
4.2 Parametric study 
The analytical solution shows how parametric instability regions change due to a variation in the 
system parameters. As examples, the effects of orientation angle (" ), stiffness angle (I ) and 
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" !
modulation angle (J ) are considered. For the case of one rotating spring, the orientation angle is 
varied from  (radial) to  (tangential), and the result is shown in 0o 90o" ! Figure 3a. Larger 
instability regions appear when the same spring is oriented in the radial direction versus the 
tangential direction, and this result is easily verified analytically [13]. 
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Figure 2 Parametric instability regions (a) One radial rotating spring with 11 0k ! , , 21k k! 1 0o" !  (b) 
Symmetric case of three identical and equally spaced rotating radial springs with , 1 0jk ! 2 jk k! , 

. Asymmetric cases: (c) Three identical but unequally spaced rotating radial springs with 0o
j" ! 1 0jk ! , 

, , , , . (d) Three non-identical but equally spaced rotating radial 
springs with , . –, principal and combination instabilities of first kind; --, 
combination instability of second kind; ***, numerical solution. 

2 jk k! 0o
j" ! 1 0o& ! 2 110o& ! 3 250o& !

21 23k k! 12k! k! 0o
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Figure 3 Parametric instability regios (a) Effect of spring orientation angle: one rotating spring with 
, . (b) Effect of stiffness angle: one rotating spring-set with 11 0k ! 21k ! k 1k k! , . (c) Effect of 

modulation angle: two pairs of diametrically opposed radial springs with 
0o" !

/ 2 1bk k0 #! ! , 1 0jk ! , 
, ,  , , , 2 jk k! 0o

j" ! 1 0o& ! 2 90o o& ! + J 180o
j& ! 270o o

j& ! + J . 

 
 The stiffness angle is defined as , -1

2 1tan /j j jk kI (! 90o o
jI$ $

k k

 ( 0 ), so that 

1 cosj j j
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I! 2 sinj j jk k, I!  where 2 2
1 2j jk k k! + j . Considering a single rotating spring-set 

defined by ,k I , Figure 3b shows the instability zones for different values of I  with 0o" ! . 
Interestingly, for , the different combination instabilities of the first kind, including 
principal instabilities, vanish for particular values of 

0o" !
I , as indicated in Figure 3b by closing of 

the instability regions in the spv -0  plane. Analytical investigation shows that combination 
instabilities of the first kind vanish for the n  and  nodal diameter modes if m tan 1/ nmI !  [13]. 
Consequently, principal instabilities corresponding to 2 and 3 nodal diameter modes vanish when 

 and , respectively, and the combination instability due to their interaction 
vanishes when  (

14.03oI ! 6.34oI !
9.46oI ! Figure 3b). These results hold for arbitrary spacing of spring-sets with 

different , so long as , and the stiffness angles for all the spring-sets are the same. 
Combination instabilities of the second kind do not exhibit similar behavior because there is no 
value of 

jk 0o
j" !

I  ( ) for which 0 90o I$ $ o 0H !! . 
 Diametrically opposed spring-set pair configuration is of practical importance in planetary 
gear systems where equal planet spacing is not possible due to assembly requirements. The effect 
of angular spacing between the diameters on the parametric instabilities is shown in Figure 3c for 
two pairs of diametrically opposed radial springs ( 10 ! ) located at , , 

 and , where 
1 0o& ! 2 90o o& ! + J

3 180o& ! 4 270o& ! + oJ J  is the modulation angle. The width of the instability 
regions vary with the modulation angle and are plotted for the range 0oJ !  to . It may 
be easily shown that for identical and diametrically opposed spring-sets, parametric instabilities 
cannot occur if  is odd [13]. This is confirmed from 

90oJ !

m nD Figure 3c. If m  is even, however, 
 or  may become zero depending on the values of 

nD
Ĥ H! , , jm n &  and M . For example, in Figure 

3c, the principal instability from  vanishes when . 2n ! 45oJ !



5 CONCLUSIONS 
 
In-plane bending vibrations of a stationary ring are parametrically excited when subject to 
multiple, rotating spring-sets of arbitrary stiffness and orientation. Instability boundaries are 
obtained analytically as closed-form expressions using a first order perturbation method, and 
these analytical results compare well with numerical results. Although there is essentially one 
independent excitation frequency (spring-set rotation speed spv ), it is coupled to the nodal 
diameters  by projections of the spring force onto the vibration modes in Galerkin 
discretization. As a result, the modal coordinate equations have the parametric excitation 
frequencies 

,m n

( ) spm n v+  and ( ) spm n v( . Summation combination instabilities of two kinds occur 
corresponding to two different values of spv : one at lower frequency ( ) /( )m np p m n+ +  and 
another at higher frequency ( ) /( )m np p m n+ ( . Difference type instabilities do not exist for this 
problem. The stiffness, orientation, and relative spacing between spring-sets govern the 
occurrence and width of the instability regions. Equally spaced, identical spring-sets and 
diametrically opposed, identical spring-sets are shown to suppress several of the instabilities. 
Simple rules relating the nodal diameters of the suppressed instabilities and the number of 
spring-sets are obtained and demonstrate the advantages symmetry can play in physical systems. 
The effect of fixed spring-sets together with moving spring-sets, and the effects of a rotating ring 
and time-varying stiffness spring-sets have also been investigated in related studies [13, 14]. 
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