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Abstract 
 
As industrial noise sources have increased year by year, tolerance for noise levels by industry, 
government, and the general population has decreased. Ever more stringent noise regulations 
are driving up the cost of design and manufacturing. To reduce this cost, designers look to the 
NVH community for sophisticated numerical tools to predict noise over a broad frequency 
range. This work focuses on mid-frequency acoustic analysis tools. 

Boundary, finite, and infinite element methods have proven useful for solving the 3D 
acoustic wave equation at low frequencies. For high frequency, localized formulations such as 
plane-wave and ray-tracing methods have been applied. These methods are impractical, 
inaccurate, or both for treating mid-frequency problems. Low-frequency methods make very 
large demands on computer processing while high-frequency methods do not account for non-
local effects.  

Several investigators [1-4] have proposed applying a hybrid low/high frequency 
approach to solve the mid-frequency problem. This approach essentially applies mathematical 
functions that match the fluid impedance at the low and high ends of the frequency spectrum 
and provide a mathematically smooth bridge between them. The drawback to this  approach is 
that it does not address the physics unique to mid-frequency, and therefore it cannot provide 
very accurate solutions.  

The goal of this work is to develop a method for efficiently addressing a class of mid-
frequency vibration. This class deals with structural surfaces characterized by a moderate 
number of major sections in which the spatial wavenumber vibration content is bandlimited 
and known a priori. A physics-based strategy will be followed to capture the fluid-structure 
interaction character that is peculiar to the mid-frequency range.  
 

Acknowledgement 

This work is funded by  In-House Laboratory Independent Research (ILIR) program of the 
Office of Naval Research. The author is grateful for the sponsorship provided by Dr. John 
Barkyoumb, Director of Research, Naval Surface Warfare Center, Carderock Division. The 
author would also like to acknowledge the support and encouragement given by his supervisor 
Dr. Matthew Craun and division head Dr. Paul Shang. 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

1. INTRODUCTION 

The differential equations governing acoustic radiation were derived in the late 19th century 
[5],6]. Complete, closed-form analytical solutions were tractable mainly for the simplest of 
geometries, for example the sphere, as other geometries produce integrands unsuitable for 
analytical integration. Investigators interested in finding solutions for more complex 
geometries focused on low- and high-frequency ranges for which asymptotic approximations 
greatly simplified the integrands. With the advent of computers, numerical techniques 
expanded the geometric complexity for which solutions could be found, but still remained 
within the frequency restriction of low or high frequencies. While ever increasing speed and 
storage capacity of computers continues to raise the upper bound for low-frequency methods, 
for many practical problems there is a large gap in the frequency range for which asymptotic 
methods will not suffice for the foreseeable future.   

Several investigators [1-4] have developed so-called hybrid methods, by which low- and 
high-frequency solutions are bridged mathematically. Frequency-domain polynomials are 
created that match the acoustic impedances asymptotically at low and high frequencies, while 
remaining smooth in the mid-frequency range. This method has found some practical 
application in time-domain shock-wave problems, in which the spectral content is dominated 
by the low and high frequency. However, for problems with predominantly mid-frequency 
excitation, these techniques have not proved accurate.  

Asymptotic methods (and their hybrid offspring) do not work well in mid-frequency 
because mid-frequency physics is significantly different from low- and high-frequency 
physics. In mid-frequency pressure at any surface point is highly affected by motion in a finite 
neighbourhood surrounding that point. This is quite different from low-frequency, where the 
motion of every surface point can significantly contribute to the surface pressure, and from 
high-frequency, where only the motion of the surface point itself contributes to its pressure. 
This difference in spatial influence cannot be captured by following the hybrid approach of 
applying a weighted average of the low- and high-frequency solutions.  

The difficulty in developing a general numerical method for mid-frequency acoustic 
problems has been that a wide range of surface velocity wavenumbers poses insatiable 
demands for processing and storage. However, there is a large class of acoustic radiation 
problems for which the surface velocity wavenumber content is fairly narrowband. Vibrations 
of large shells for example. By limiting the scope to problems with bandlimited surface 
velocity wavenumbers, some practical progress can be made. This paper presents the 
formulation of a numerical method for analysing acoustic radiation for spatially-bandlimited 
surface vibrations. 

2. FORMULATION 

The surface pressure P generated by a surface S vibrating in an infinite acoustic space is 
expressed by the Helmholtz Integral Equation (1), 
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where xr  and yr are the position vectors of the field and source points, respectively, V is the 
outward normal velocity, and nr  is the unit normal vector directed into the fluid. Numerical 
analysis requires the discretization of the integral equation to form a complete set of algebraic 
equations.  

The numerical approach developed in this paper for mid-frequency analysis is an 
extension of the boundary element analysis (BEA) method that has been developed for low-
frequency problems. Hence it is instructive to summarize BEA to set the context for mid-
frequency analysis. 

2.1 Low Frequency Boundary Element Analysis  

For low-frequency analysis, we partition the surface into a mesh of surface elements and 
suppose the mesh spacing small enough that the normal velocity and pressure are 
approximately constant over each element. Then the Helmholtz Integral Equation transforms 
into a set of discrete algebraic equations. 
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in which nS is the nth element surface area.  Assembling the surface element pressures, 
velocities, areas, and associated coefficients into matrices produces a matrix equation that can 
be solved for the pressures for known distributions of velocities: 

{ } [ ][ ]{ } [ ][ ]{ } [ ] [ ][ ][ ] [ ][ ]{ }VSGSHIPSHVSGP 1−+=−=    (2d) 
The numerical integrations involved to compute the matrix coefficients (2b) and (2c) require 
special algorithms removing singularities for the diagonal components (coincident field and 
source elements). This singularity-removal step is one of two major numerical tasks in setting 
up the boundary element problem. The second major task is inverting the matrix [ ] [ ][ ][ ]SHI +  
in (2d). Special care must be taken in limiting the element size so this matrix is non-singular. 

2.2 Modifying The Discrete Helmholtz Integral Equation For Mid-Frequency  

 If we take a boundary element mesh suitable for low-frequency analysis and raise the 
frequency, the assumption of constant normal velocity and pressure over an element begins to 
fail as the acoustic wavelength decreases to the element span.  
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Figure 1: Surface element geometry 

Consider the geometry of a general surface element depicted in Figure 1. Let the 3D space 
position vector yr of a point on the surface element be specified by two surface coordinates1 

αq ( )2,1=α . The major condition imposed by this method is to restrict the normal velocity to 
be sinusoidally-distributed over the element,   
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where my0
r is the 3D space vector of the position of a reference point, and mk
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is the velocity 

wavenumber 3D space vector, on the mth surface, respectively. The velocity amplitude can be 
found by integrating the velocity with the same sinusoidal weighting magnitude but with 
opposite phase, 
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The major assumption is that the pressure over the element has the same sinusoidal 
distribution, 
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Inserting equations (3) and (4) into equations (2b) and (2c) modifies the coefficients of the 
discrete HIE matrices. 
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in which hatted quantities refer to mid-frequency coefficients. Comparison of Equation (5) 
with Equation (2) shows the mid-frequency coefficients approach the low-frequency 
coefficients as the velocity wavenumbers decrease to zero. 
 

2.4 Evaluating Surface Integrals  

The number of elements must be small enough for the matrix inversion in equation (2d) to be 
performed accurately without excessive demands on computer memory. This practical 
limitation requires element sizes of the same order as for low-frequency BEA. A further step 
for keeping the method practical is to use a mesh suitable for both low- and mid-frequency 
analyses.  
                                                 
1 To distinguish between 3D space and 2D surface coordinates, indices for space coordinate values use Roman 
letters and indices for surface coordinate values use Greek indices.  
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As designed, the integrands in equation (5) will be highly varying over the surface 
element, thus presenting a challenge for efficient, accurate integration. Performing purely 
numerical integration would offer little computational savings over merely performing low-
frequency BEA over a much finer mesh. Instead we pursue a strategy of increasing the 
amount of integration that can be performed analytically and make use of pre-tabulated 
functions. 

Examine the double surface integral (over source and field element surfaces) in 
Equation (5). The integrands ( ) ( )[ ]mm yykikrG 0exp, rrr

−⋅  and ( ) ( )[ ]mm yykikrH 0exp, rrr
−⋅ , and 

the differential surface area )(ydS r  can be expressed explicitly in terms of αq . These 
analytical expressions contain products of complex exponentials of polynomials in αq of the 
general form 
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in which K,,, 210 MMM  are constants. Closed-form analytical integration is not possible for 
these terms, so these integrals are pre-computed numerically for a number of parameters and 
stored in lookup tables. The second integration, over the field surface, also involves these 
types of expressions and the lookup tables would be used here as well. 

2.5 Status 

The author has developed algorithms for defining surface elements and extracting the surface 
geometric information required for expressing the integrands in terms of surface coordinates. 
To facilitate application to general problems, the equations are formulated in general 
curvilinear coordinates. Rules of tensor calculus [7] are applied to express and compute vector 
quantities and their spatial derivatives. The author is using the programming language 
MATLAB with special emphasis on using the elements of MATLAB most akin to the C++ 
programming language such as class data structures. 

The project reached its first milestone of being capable of performing standard low-
frequency boundary element analysis. The second milestone, scheduled for October 2007, is 
to perform mid-frequency analysis on a submerged sphere. Subsequent milestones in 2008 
and 2009 are to perform and validate mid-frequency analyses on a variety of surfaces. 

4. CONCLUSIONS 

A method for solving the mid-frequency acoustic radiation problem for a spatially-
bandlimited surface velocity has been presented. Code development is underway, with 
expected completion of a mid-frequency analysis capability for spherical surfaces by October 
2007, cylindrical and planar surfaces in 2008, and general surfaces in 2009. 
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