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Abstract 
 

A modified general transfer matrix method is developed for the steady state response analysis 
of linear flexible rotor-bearing systems in the frequency domain with fixed matrix size. In 
this paper, the modifications of the transfer matrix method based on Timoshenko Beam 
Theory are derived from the concept of continuous systems instead of the conventional 
lumped system concept and the paper tries to extend the transfer matrix method to fit a 
synchronous elliptical orbit and a non-synchronous multi-lobed whirling orbit. To 
demonstrate the applicability of this method, a three-disk rotor-bearing system is used as a 
physical model in the numerical analysis. 
 

1.  INTRODUCTION 
 

Dynamic characteristics of rotor-bearing systems are obtained by various methods such as; 
transfer matrix method (Lumped system and continuous system), finite element technique 
and dynamic stiffness method considering different influencing parameters related to rotor, 
disk and bearings [1-5]. In this work, an attempt has been made to formulate the general 
transfer matrix method based on continuous system model and superimposed of vibrations of 
the shaft in both the plains for dynamic response and critical speed of rotor systems. 
 

2.  TRANSFER MATRIX OF SHAFT 
 

The elastic relations of the shaft element based on Timoshenko beam theory as shown in 
Figs. 1 & 2 are given as follows : 
 
In the X-Z plane; 
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 Figure 1. A rotating shaft element. Figure 2. Geometries of shaft and disk unbalance. 
 
In the X-Y plane; 
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 Since the whirling orbit is elliptical and synchronous ( )w=Ω  as shown in Fig.3, the 
steady state solutions can be written as; 
 ( ) ( ) ( ) tsintXtcostXt,zX SC Ω+Ω= ,    ( ) ( ) ( ) tsintYtcostYt,zY SC Ω+Ω=  (2) 

where, XC, XS, YC, YS are mode functions. Introducing SC jXXX +=  and SC jYYY += , the 
general solutions can be written as; 
 ( ) z

S
z

C ejUeUzX λλ +=    and   ( ) z
S

z
C ejVeVzY λλ += . 

 
 UC, US, VC, VS are real constants and λ  is the characteristic value with respect to a 
specific natural mode. Separating real and imaginary parts, it yields as; 
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 Since UC, US, VC, VS being non-trival, the characteristic equation can be obtained by 
setting the determinant of Eq. (3) to zero. It yields as;  
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By separating Eq. (4) into two parts as follows : 
 ( ) ( ) ( )[ ]{ } 0khdcjgf

2232
l

4 =+λ−λ+λ++λ+λ  (5a) 
 ( ) ( ) ( )[ ]{ } 0khdcjgf

2232
l

4 =+λ−λ+λ−+λ+λ  (5b) 
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 The four complex roots of Eq. (5a) are iii jba +=λ  for i = 1 ~ 4 and other four complex 
roots of Eq. 5(b) are iii jba +=λ  for i = 5 ~ 8. 
 For iii jba +=λ , i = 1 ~ 4, UC = VS, US = -VC 
 For iii jba +=λ , i = 5 ~ 8, UC = -VS, US = VC 
 
 Thus, the four homogeneous solutions are as follows : 
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where, 
 Ai and Bi are real constants (i = 1 ~ 8).  
 
 Differentiating Eq. (6) with respect to z and substituting Z=0, it becomes  
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where, 
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 t = transpose of the array. 
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At Z = L, 
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where, [W(Z=L]=[XC(L), XS(L), YC(L), YS(L)]t 

 
Now, 
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 The state variables can be written as; 
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 Further, the state vectors can be written as; 
 SCSC jYYY,jXXX +=+= ,    ScSc j,j β+β=βα+α=α  
 YSYCYXSXCX jMMM,jMMM +=+=  
 YSYCYXSXCX jQQQ,jQMQ +=+=  (12) 
 
 Combining Eqs. (11) and (12) and separating real and imaginary terms, it yields as; 
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At Z = 0 , ( )[ ] [ ]{ } 1170SA0ZW ×==  (14) 
 
Combining Eqs. (13) and (14), it yields 
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where, [ ] 1717T ×  is the transfer matrix of the rotor segment (Z = L). 
 

3.  TRANSFER MATRIX OF THE DISK 
 
The equilibrium condition, the relations of the state variables between the right and left side 
of an unbalanced disk is expressed as [1-4]; 
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4.  TRANSFER MATRIX OF THE BEARING 

 
From the force equilibrium, the relationship of the state variables between the left and right 
sides can be written as [1-5]; 
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5.  OVERALL TRANSFER MATRIX 
 
The overall transfer matrix of the rotor from one end to another can be written as; 
 
 { } [ ] { } 11701717117n SUS ××× =  (18) 
 
where,  }S{]T[]T[]T[]T]........[T][T][T[]T[]U[ 01bi2dbdj1nbjn −=  (19) 
 

6.  SOLUTION ANALYSIS 
 
Since the shear force and bending moments are zero at both the free ends of the shaft, Eq. 
(18) becomes; 
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where, 
 { }t

SCSCSCSC ,,,,Y,Y,X,X'S ββαα= ,   { }tO,O,O,O,O,O,O,OO =  
 
 By deleting all elements, which are related to moments and shear forces, it gives; 
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and 1818218
'
08821 }O{]U[}S.{]U[ ×××× =+  (21b) 

 
 Subscripts ‘O’ and ‘n’ are labelled for stages. 
 Eight simultaneous equations in Eq. (21b) are solved to obtain the eight state vectors 
{ } 18

'
0S × . 
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 Then, the state vectors at any desired stage (pth stage) can be obtained by using Eq. (18) 
through matrix operation for the determination of dynamic response. 
 117o1717p117p }S{]U[}S{ ××× =  (22) 

where, tt
18
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7.  FINITE ELEMENT ANALYSIS 

 
A typical flexible rotor-bearing system consists of a rotor composed of discrete disks and 
rotor segments, and discrete elastic bearings as shown in Fig.4. Each rotor element is 
modelled as an eight degree of freedom element with two rotations and two translations at 
each end in each plane. The co-ordinates ( )8~li,qe

i =  are the time-dependent and point 
displacements of the finite rotor element. 
 { } { }te

8
e
7

e
6

e
5

e
4

e
3

e
2

e
1

te
i q,q,q,q,q,q,q,qq =  { }22221111 ,,w,v,,,w,v φθφθ= t (23) 

 
 The Lagrangian equation of motion for the finite rotor element at the constant speed can 
be written as; 
 ]F[}q]{K[}q{]G[}q]{M[ eeeeeee =+ω− &&&  (24) 
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 The Lagrangian equation of motion of the unbalanced rigid disk with gyroscopic effect 
at the constant angular speed can be written as; 
 }F{}q{]G[}q]}{M[]M{[ ddddd

r
d
t =ω−+ &&&  (25) 
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 The governing equation of the bearing can be written as; 
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 The assembled undamped system equation is of the form : 
 ]F[}q]{K[}q]}{C[]G[{}q]{M[ ssssssss =++ω−+ &&&  (27) 
 
 The steady state solution is 
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 Differentiating any separating cosine and sine terms, it yields 
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Then 
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 The solution of Eq.(30) provides { }s

cq  and { }s
sq  and back substitution in Eq.(28) 

determines the unbalance response of the rotor system at the required position. 
 

8.  NUMERICAL ANALYSIS 
 
In order to illustrate the accuracy of the theoretical analysis, a three disks rotor system 
mounted on fluid-film bearing is considered as physical model as shown in Fig.5 [disk mass 
(Md) = 13.47 kg, polar mass moment of inertia ( )d

pI  = 1.02 x 10-1 kg m2, transverse mass 

moment of inertia ( )d
TI  = 5.11 x 10-2 kg m2, direct stiffness coefficients (Kxx = Kyy) = 1x107 

N/m, cross-coupled stiffness coefficients (Kyx = Kxy) = 5 x 106 N/m, direct damping and cross 
damping coefficients are Cxx = Cyy = 2 x 103 N/m/sec, Cxy = Cyx = 0, respectively]. 
 
 Two cases are considered in the numerical analysis. 
Case-1 : Bearing without damping (Kxx, Kxy, Kyy, Kyx) 
Case-2 : Bearing with stiffness and damping (Kxx, Kxy, Kyy, Kyx, Cxx, Cyy) 
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9.  DISCUSSION & CONCLUSION 

 
The amplitudes of response are calculated by the absolute values of the major axis of the 
elliptical orbits. The calculated dynamic responses at disk-1 are plotted as solid curves in 
Figs.6 & 7 for the first natural mode region based on modified transfer matrix method. The 
dashed curves are calculated from the finite element method by six elements. It is shown that 
two curves for both the cases are close to each other. The cross-stiffness make the critical 
speed split into two values for its asymmetry, as evaluated in case-2 at 44.83 Hz and 51.82 
Hz. The critical speed can be located from the maximum response peak of the frequency 
response curve. For asymmetrical bearing due to cross-stiffness and damping, the whiling 
orbit becomes elliptical rather than circular. Synchronous response due to unbalance mass 
and non-synchronous response due to the journal motion with frequency being three times of 
the rotating speed is considered ( )ω=Ω 3  and the numerical results are produced in Figs.8 & 9. 
 
 The modified general transfer matrix method is a versatile technique for the 
determination of dynamic characteristics of any rotor-bearing system considering various 
influencing parameters related to rotor, disk and bearings in the frequency domain. 
 

  
 
Figure 3. Response of a synchronous whirling orbit. Figure 4. A finite rotor element. 
 

   
 
 Figure 5. A three-disk rotor bearing system Figure 6. Dynamic responses at disk-1 (case-1). 
 (h=0.04 m, d = 0.04 m).  
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Figure 7. Dynamic responses of disk-1, case-2. 
 
  Figure 8. Synchronous whirling orbit of disk-1, case-2. 
 

  
 
Figure 9. Non-synchronous whirling orbit of disk-1, case-2. 
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