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Abstract

This paper explores the feasibility of using moments to cortelsbund radiated from a
small cylindrical shell. Previous theoretical work has shown #aircumferential line
moment can provide good control of radiated sound in the first thregmaretric axial
modes of a water-loaded cylindrical shell representing a gesabmarine. The results
described here are part of a study that seeks to experimentally vdieltheadretical result on
a smaller scale in air. The steel shell considered is 1dagn 400 mm in diameter and 2 mm
thick. Its ends are capped by 20 mm thick circular steel pla@se end-plate would be
driven by a shaker, with the proposed control moment provided by piedo attuators
acting on a T-section ring-stiffener. The stack forcesnandelled as two circumferential line
forces, and a modal approach with cylindrical shell equations is tasedlculate their
optimum value to control sound radiation at axial resonance. Althcugle seduction in
radiated sound from the shell in air is possible, the problemmplicated by the requirement
for large control forces and a number of higher-order circrentml modes with resonances
close to the axisymmetric ones being controlled.

1. INTRODUCTION

Minimisation of the sound radiated from a naval submarine is esisemtreduce its
detectability and thereby maximise its effectiveness. Smust submarines are cylindrical in
shape, many investigations are based on relatively simple egihghell structures. Much
early work on shells and cylindrical shells in particular is sansead by Leissa [1]. Hodges
et al. [2] present a detailed model for vibration transmission ribkeed cylinder that also
models the internal degrees of freedom and resonances of th&d hbsvave propagation in
periodically stiffened shells, with its pass and stop bands, is teddeding a finite-element
approach by Solaroli et al. [3] and by an analytical techniqueédaeyand Kim [4]. Fluid
loading has a big effect on the response of a submerged strucdewdt [5] presents a
comprehensive analysis of the free modes of propagation for an infinitelyhiongytindrical
shell with fluid loading. Harari and Sandman [6] consider the #cotediation from the
shell as well. Choi et al. [7] use a modal-based method to mueleiliration and acoustic
radiation of submerged cylindrical shells that include internal substructures.
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Figure 1. The cylindrical shell with heavy end plates.

Numerical approaches can model more general structures than cheatesl by
analytical means. Marcus and Houston [8] use a finite-elem&j)tniedel to show that the
addition of point masses to the internal frames of a submergediigdl shell increases its
acoustic radiation by coupling high and low order circumferentisbmances. Homm et al.
[9] use both FE analysis alone and FE combined with the boundary-el@Egnnethod to
model the structural and acoustic response of two joined hemisphedaplbed cylinders
with some internal structure. Blakemore et al. [10] model a-faaded ribbed cylindrical
shell with an extended form of statistical energy analySIEEA) that can deal with the
periodicity of the structure as well as higher frequenttias FE. While these methods can
give good results, they are too numerically intensive for rea-tise in active control where
a simple cost function for radiated sound is needed. Fuller dtlldiscuss active vibration
control of cylindrical shells, including active structural acoustimtrol to minimise the
structure-borne radiated sound.

A simplified analytical radiation model for a submarine is dbsed in Pan et al. [12].
It considers low-frequency axial excitation, as might be indgetthe propeller shaft on the
thrust block of a submarine. Only axisymmetric motion is considsnece the ‘concertina’
(predominantly axial) modes are of most interest. The soundiceddue to these modes is
shown to be controlled by a circumferential moment which is velgtsmall compared to the
axial force. Figure 1 shows the small-scale cylinder corsider this paper as a potential
test-bed to experimentally validate this moment control. An initiadal survey of the
cylinder is given in Forrest [13], which shows that the natuesjuencies up to at least 600
Hz can be predicted within a few per cent by simple Donnell-Mtisbiteell theory for a
cylinder with shear-diaphragm (simple support) end conditions, debgitend caps which
add mass and provide a built-in type boundary. This is because the imapesstion are
mainly radial, with little end motion. This paper will investgdhe feasibility of moment
control of the radiated sound from the small-scale cylinder in axisymmadtion.

2. MODELLING

A thin cylindrical shell of radius, thicknessh and lengthL is shown in Fig. 2(a). The
Donnell-Mushtari equations of motion for such a shell can be deterrfmorad_eissa [1] and
are

a’u, +(1-V)u,,/2- p(l-v? R%i/E+ (+v o,/ 2+vaw, +a* (v? Jj/Eh= (
A+v)au,/2+ (1-v @,/ 2+ v, - pa® v p/E+w,+a’ vy, /Eh=0 (1)
vau, +v, +w+h’0*w/12a’ + pa’(1-v ) /E-a’(1-v *Y,/Eh = O
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whereu, v andw are the displacements argl, g, and g, are the net external surface

tractions in the, y andz directions respectivelyy is the densityk the Young’'s modulus and
v the Poisson’s ratio of the shell material; and subscxiptisd & denote differentiation with
respect to those variables and dot indicates differentiation wsgece to time. Solutions
which satisfy shear-diaphragm boundary conditions are

u=Acosfwrx/L )cosd & p=B simyzrx/L )sind ‘€ w=C smfzx/L )omd '“ (2)

which when substituted in Eqg. (1) with zero external forces giveutac ccharacteristic
equation in the natural frequency squaredfor a given combination ah andn. This can
be solved as described by Forrest [13], with non-axisymmetric matiari dominating the
lower modes of the cylinder in Fig. 1.

For the axisymmetricr{=0) vibration of interest in submarines, all derivatives with
respect tadin Eqgs. (1) are zero, and the second equation decaufies the other two im
andw. The equation i describes torsional modes which are not of concern here. Consider
instead the axial and radial response of the cylinder shown stib@ligan Fig. 2(b). F, is

the axial excitation force that would be provided by an inertialador, F, are control line
forces which would be provided by piezo stacks acting on a T-stiffandM, and M, are
the masses of the end plates, assumed rigid. The axial and radial force distrdmations

= Fo(X)/2ma—-M,il| _ d(x)/2ma-M il | d(x-L)/2m

_ 3)
G =-F.o(x-d,) +Fd(x-d,)

where division by2/ra distributes the point forces around the circumieesand the Dirac
delta functionsd(x) distribute all the forces along the cylinder's ddm While a wave

solution as used by Pan et. al [12] may seem liyitatractive, using solutions of the form

e d* for bothu andw, some of the rootd for the parameter values used here result in
extremely large exponentials which are numericaityactable. Thus a modal solution will
be used, based on the forms in Eq. (2), given tti@atcylindrical shell to be modelled was
found in Forrest [13] to be well-described by thésections even if its boundary conditions
do not strictly adhere to shear-diaphragm onese imartial forces due to the end plates are
now included in the forces of Eq. (3), so this aggtion only violates the zero slope end
condition. As there is n@dependence, the responses can be written as the surds

u:iﬁcos(jnx/L)é‘“:U Cl w:icj singrx/L Y8 =W & (4)

Figure 2. (a) A thin cylindrical shell of radias thicknessh and lengthL, showing the coordine
systenmx, y andz. (b) Schematic side view of the cylindrical shell withdigeavy end plateshowinc
the axial driving force and pair of line control forces.
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where in practice only as many terms as needed for convergence need to be summed.

A solution can be found by using the orthogonality of the mode-shapzidns to
consider the contribution of modhe alone to the displacements in Eq. (4) and forces in Eq.
(3). Substituting into the axisymmetric version of Egs. (1), iplying by cos(mmx/L ) or
sin(mrx/L) and integrating over the length [0] to remove thex-dependence yields the
matrix equation

—a(l-v?)
_/]mz‘ + 1+M 0?2 VA A, —nEhL F
rpahL = (5)
. |l Cn -2a°(1-v?)( . Ad, . Ad,
—VA 1+kA," -Q sin - sin F.
m m EhL a a

where Q? = p(1-v?)a’w?/E, A, =mva/L andk =h?/12a. The free vibration problem for
the cylinder with added massive end plates carohed by settingF, = F, =0 and solving
the characteristic determinant of the matrix onléfehand side forQ*. This results in two

natural frequencies for each, one largely axial (the ‘concertina’ mode) and daegely
radial (the ‘breathing’ or ‘ring’ mode). For fordesibration, some damping is included and

[A, C.]"is calculated from (5) for a range mfand wvalues, and substituted into Egs. (4).
Loss-factor damping of will be used such th& is replaced byE(1+i7).

In order to develop a cost function for the souadiation, each end plate can be
considered as a piston in the end of a tube andslie# as a cylindrical radiator. The
interaction between the three sound sources teatfibre make up the cylinder is ignored for
simplicity. Bies and Hansen [14] give results foe piston and Fahy [15] gives results for
infinitely long cylindrical radiators. The radiatsound poweiP, . for the piston and power

per unit Iengthﬁmmde, for the cylinder, when the radiation efficiencag unity, are given by
Ppiston = nazlooco l\/|2/2 and 5cylinder = Za,OOCO<\72> (6)

where p, is the density of and, the speed of sound in the acoustic mediunV i$f complex
velocity amplitude,[\/|2 =V V" is the squared velocity magnitude of the pistow, &%) the

space average of W*/Z, the time-averaged mean-square normal velocithefcylinder’s

surface, where asterisk * indicates complex congugd-or the end cap¥, =iadJ at x=0
and x =L, while for the cylindrical shelly =icN . This with the displacements in Eq. (4)
can be substituted into Eqgs. (6) to give the tebaind power radiated from the cylinder as

Poca =%pocoﬂaaf [aii(H ) AA + Licjc;] @)

j=1 k=1
where the cross terms in the double sum only affecpower level between resonances. The

power can be expressed as a dB sound power |lewél)(Rith a reference power df0™*W.
At resonance of a mode, the sound power is dominated by that mode’s terfmsfind
the optimum line forces to control a resonancey ahé terms for moden in Eq. (7) are

therefore considered. The mode’s coefficieAtsand C_ can be found in terms df, and
F. analytically or numerically from Eq. (5) by inveng the 2x 2 matrix. Writing these as

A, =aF +pF, and B, =yF +&F, (8)
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and substituting them into Eq. (7) with= k = m only, allows the sound power for moufeo
be expressed as a function of the external fordeg, is real by definition, buts, and F,

may be complex. Takings, as real and setting the derivative®, /0(Re(,)) and
0P, /d(Im(F,)) to zero in turn gives the following result for teentrol line forces.

-(aRe@B )+L Refe )/3F, a ImgB yL Ime )/3F

. ImE, :_(
a|,8|2+L|£|2/2 E) a|,6’|2+L|£|2/2

Re(F. )=

(9)

At a resonancelm(F,) is small and arises from the damping includedérhodel, but
would be more significant if this method were togaemeralised to control sound power at an
off-resonance frequency. Once calculatédcan be used witl, in Eq. (5) to determiné,
and C_ and hence the total sound power from the conttatdinder using Eq. (7). While

themterms alone give an accurate result for the umotbetl sound power from the cylinder

driven at the natural frequency of maadethe full sums must be used for the controllececas
because many modal terms are needed for accuiaial sppresentation of the displacement
around the line control forces.

3.RESULTS

The parameter values used to generate the follovesgits are given in Table 1. Each added
mass includes an end plate plus the annular flangdolted to, as shown in Fig. 1. The line
force positions are based on a T-stiffener withO8 tnm flange being welded inside the
cylinder 150 mm from the driven end.

Table 1. Cylinder and acoustic medium parameters.

Parameter Value Parameter Value
radius,a (m) 0.2 added masM; (kg) 30
thicknessh (m) 0.002 added magd, (kg) 30
length,L (m) 1.5 line force locatiord; (m) 0.1
density,p (kg/nT) 7800 line force locatiord, (m) 0.2
Young’s modulusE (GPa) 210 air density,0, (kg/nt) 1.21
damping factory 0.01 sound speed in at, (M/s) 343
Poisson’s ratioy 0.3

The first few natural frequencies calculated (wadro damping) from the characteristic
determinant of the matrix in Eq. (5) are given able 2. TheA, /C, ratio shows the relative
axial to radial motion, so thd, frequencies are for the ‘concertina’ axial modémterest,
while the f, frequencies are for radial modes. Interestinfgly,the concertina modes the

radial contribution increases with mode numberlunéquals the axial one fan=4. If the
end masses are set to zefp=1714 Hzand f, =4369 Hz for m=1, which shows the large
effect of the masses on the axial motion of thdl sii@ose own total mass is only 29.4 kg.
The 766 Hz frequency is close to the 771 Hz frequecalculated from the formula
f =[k,(M,+M,)/ MM ]"?/2 (see Blevins [16]) for two masses connected byring, if
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k. = EA/L whereA is the shell's cross-sectional area. The otherequencies almost form
a harmonic series like that in axial rod vibration. Thefrequencies compare with the ‘ring’

frequency of 4328 Hz given by, =¢, /2ma with ¢, =[E/ p(L-v?)]"? for an infinite shell

(see Fahy [15]), equivalent t€@2 =1 or the longitudinal wavelength equalling the
circumference. Thus the radial frequencies do not change much with increasing

Table 2. Natural frequencies of axisymmetric modes.

m f, (H2) An/C f, (H2) An/C

1 766 7.71 4335 -0.026
2 1524 3.49 4359 -0.056
3 2259 1.93 4411 -0.102
4 2937 1.07 4524 -0.183

Figure 3 shows the forced response of the shell calculated fepn(BEwith just an
axial force (zero control forces) and summing 10 terms in Eq. (@)e driving-point
response, Fig. 3(a), shows resonances at all four axial modesbts Z, while the shell
midpoint response, Fig. 3(b), shows only the first and third as expet€tesl.driving-point
response needed all 10 terms to converge between resonances, wtilellthesponse only
needed 5 (the response above 2259 Hz is a combination of the third and fifth modes there).

The 766 Hz mode is within the bandwidth of the inertial shakers and pimators
available for use on the cylinder, while the 1524 Hz mode is riglhetlimits. Thus
discussion of radiated sound control will concentrate on these two modésle these
frequencies are relatively high in an absolute sense, thedretaides are of low geometric
order and so suitable for application of active control, particularyaftest-of-concept like
this where the real application will be low-frequency. Tabigv@s the optimum line control
forces calculated from Eq. (9) for the first three axial modsswell as the associated
uncontrolled and controlled total radiated PWL from Eq. (7). At 766Kk~ 2maf /c, is

2.8, for and above which the piston normalised radiation resistance andrashation
efficiency are both unity (see graphs in Bies and Hansen [14]and[E5]), so Egs. (6) and
(7) are valid. Although fairly large reductions of 10 dB or more loa achieved, they come
at the cost of very high control forces. For the first made-{), the point force equivalent
to a line force of magnitud&, =30.8 N/m is 38.7 N, two of which are needed: a total of

77.4 N generated to control an axial force of 1 N. This can be unoiérsioterms of

(a) (b)
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Figure 3 Magnitudes of (a) the axial displacement at the driven etigdeofylinder and (b) the rad
displacement in the middle of the cylinder, under axial loading only.
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reciprocity if the A, /C,, of Table 2 are considered. An axial force generates a weayf s

radial displacement in the first axial mode, so a radial cofdrok of the same magnitude
will generate a very small axial displacement, hardly ehotay cancel the large axial
displacement being generated by the applied axial force. Tdteveethinness of the shell
means that the coupling of shell bending into other directions of motion is not very strong.

Table 3. Optimum line force and uncontrolled and controlled sound powef foi N.

m f (Hz) F. mag. (N/m)| F, phase (deg)) PWL,,, (dB) |PWL, ,oiq (0B
1 766 30.78 179.7 66.0 50.1
2 1524 8.21 178.9 61.1 49.9
3 2259 4.21 178.1 59.2 49.6

Figures 4 and 5 show the real parts of the axial and rad@adenents of the cylinder
driven axially byF, =1 N at 766 Hz and 1524 Hz respectively, calculated from Egs. (5) and

(4) with zero and optimum control forces. These can be consideregslsng’ of the
displacements along the cylinder’'s length at tinve0 and integral multiples of the period
thereafter. The modal sums comprised 100 terms to achieve gowd spavergence in the
controlled responses.

The analysis presented so far has only considered axisymmeiii@n of the cylinder.
If piezo stacks are used with a T-stiffener to provide a comhent, they will in fact be
applying point forces to the shell. Such point forces have a hwasdnumber content, so

a x 10 b x 10
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— 1f N f=766 Hz - - O -~~~ == ==
S =
= 05 N — -05
) =
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Figure 4. Reapart snapshots of (a) the axial displacement and (b) the radiplackmen
uncontrolled - - - ) and controlled——) with optimum line forces, at the first resonance.
9
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Figure 5. Reapart snapshots of (a) the axial displacement and (b) the radiplackmen
uncontrolled - - - ) and controlled———) with optimum line forces, at the second resonance.



ICSV14 « 912 July 2007 « Cairns « Australia

could excite higher-order modes with resonances near the dfrequgency. Predominantly
radial modes withn=1 can be calculated accurately from Eq. (1) with zero foa®s
discussed above (see Forrest [13]). For example, radial moggsvithin 5% of the 766 Hz

axisymmetric resonance include ones at 740 Hz (5,7), 796 Hz (1,8), 8@)&iand 803 Hz

(2,8). More exist around the 1524 Hz axisymmetric resonance. pragents a real
possibility of controller ‘spillover’ (the excitation of additionalodes other than that being
controlled). Other considerations that have not been included in thigsianale the

stiffening effect on the shell of adding a T-shaped rib, and the modes of tifieesitself.

4. CONCLUSIONS

It has been shown that a modal approach is suitable for modellirfgrtdeel axisymmetric
vibration of a small-scale cylindrical shell with massive gidtes. For the cylinder
considered, it is possible to reduce the sound power radiated bysthan second axial
‘concertina’ modes by more than 10 dB, using two circumferential florces to provide a
control moment near the driven end. However, the relative thinngbkss afhell means the
coupling is poor and the reduction comes at the cost of very high cantretf equivalent to
nearly 80 times the driving force for the first mode. There also several higher-order
modes with frequencies near the first and second axial modesgr#i® possibility of
controller spillover in the practical implementation of the proposed control scheme
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