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Abstract 
This paper determines whether chaotic dynamics exists in a flying vibratory system. 
Acceleration signals were measured at nine different locations or orientations of the flying 
object during a test flight. Steady-state acceleration data were extracted to reconstruct pseudo 
phase-space trajectories from which two dynamical indices including the correlation dimension 
and the maximum Lyapunov exponent are calculated. Although generally the correlation 
dimension depends on the embedding dimension, it is found that in three out of the 
nine-channel acceleration signals, the correlation dimension saturates when the embedding 
dimension reaches a critical value. The phenomenon indicates a possible existence of chaotic 
motion. The maximum Lyapunov exponents calculated for the same three-channel data are all 
positive which again implies the possible existence of chaos. To determine whether the 
experimental time series that demonstrate chaotic characteristics are in fact deterministic 
(rather than random noise), a sequence of two statistical tests is applied. Based on these tests, 
the possibility of those three-channel acceleration data being random noise is excluded. 

1. INTRODUCTION 

Chaotic vibration of a flying system is an important issue since it may jeopardize the structure 
of the flying object and cause instability subsequently [1]. It can also cause uncomfortable 
experience for passengers in a passenger airplane and inaccurate targeting for a missile system. 
The vibration behaviors of a flying system can be studied via either analytical or experimental 
approach. For some systems, such as large-scale high order ones, the analytical approach is 
difficult. For some others, such as black box systems or micro/nano scale systems, modeling of 
the system dynamics is difficult or impossible. In these cases, the experimental approach is 
preferred. The experimental approach is based on a discrete set of observed quantities called a 
time series [2-5]. Useful information can be extracted from the time series. In general, an 
equally sampled time series can be written 
as ,......,,..)),.......(()),((),( 2100200 vvvyvyvyv ≡ττ ϕϕ Here, ))(())(( 0 tyvyv t =ϕ  denotes the 
value of an observable state  at time t .   v

Identification of chaotic dynamics from experimental time series is a nontrivial task 
because the data could be contaminated by random noise whose properties are very similar to 
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chaotic data.  Fortunately, a sequence of two statistical tests was proposed in [6] that can be 
adopted to diagnose dynamical structures inherent in time series.  The first of these tests is 
known as the BDS test.  The test can determine whether a time series, pre-whitened from linear 
structure, is independently and identically distributed noise (iid, or loosely denoted as random 
noise).  If the series is not iid, the β  test (also proposed in [6]) is then applied to compare 
estimates of correlation dimension values of a series with estimates obtained from the series’ 
own random shuffles. The test is designed to detect whether changes in the intrinsic properties 
of the series take place as a result of shuffling the data.  The β  test is found to be able to judge 
whether a time series behaves like strictly deterministic process with low attractor dimension. 

2. DESCRIPTIONS OF THE SYSTEM AND DATA  

The missile system under study is shown in Fig. 1. It is composed of 3 main sections, where 
seeker is located at the front section, guidance panel is at the middle, and the actuator is at the 
rear section. Nine channels of acceleration signals, denoted as V  to V , were measured 
simultaneously at various locations and orientations of the missile during a test flight. The 
locations of the signals are also indicated in Fig. 1. Approximately, the signals V  to V  were 
measured from the front section, while V  and V  were from the middle, and V  to V  were 
from the rear section.  
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The data were sampled at 10,000 Hz for more than 5 minutes. To avoid transient effects, only 
those data that have reached a steady-state condition were taken for the analysis. Fig. 2 shows 
features of the steady-state nine-channel data.  Among the nine-channel signals, V1 to V9, it was 
observed that V , V , V  and V  were dominated by a considerable amount of spikes. These 
spikes were very likely caused by external disturbance instead of the actual vibration signals. 
We also speculate that these signals were taken near nodal surfaces of some flexural vibrations, 
although more thorough investigations are required to turn these speculations conclusive. 
Therefore, in what follows, only V , V , V , V  and V  will be analyzed. 

2 4 5 7

1 3 6 8 9

3. PROCEDURES FOR NONLINEAR TIME-SERIES ANALYSIS  

To explore whether chaos exists in the obtained experimental data, the phase trajectory needs to 
be reconstructed. To this aim, the method of delay is applied. The method can be described as 
follows [7,8]. First, a single physical quantity x  is measured. Then, an m dimensional 
pseudo state vector is formed by taking m measurements with consecutive time delays by 

)(t
τ , 

i.e., ( ))1((),...,(),()( )ττξ −++= mtxtxtxt
)(tx

.  Here, m is called the embedding dimension. In 
practical experiments,  can only be measured at discrete time with a sampling period t∆ . 
Thus, the delay time τ  can only be chosen as a multiple of t∆ , i.e., tl∆=τ . where l  is a 
positive integer. Now, let x )()( tnxn ∆=

tn∆ ()(n
 to simplify the notation. A pseudo state vector at 

  can be re-expressed as t = )))1(),...,),( lnxlnx (m(nx −++=ξ . The pseudo state 
vector )(nξ  will form the required pseudo state trajectory. To apply the method of delay, two 
parameters need to be determined, namely, the delay index  and the embedding dimension m. 
The delay index l  can be determined by the average mutual information, which is a quantity 
measuring the mutual information in x  and 

l

)(n )( lnx + . As l  increases, the mutual 
information will decrease. The delay index is chosen as the first minimum of the average 
mutual information. It is conceivable that this l  will make  and  relatively 
independent. 

)(nx )l+(nx
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The embedding dimension m  is determined by the method of false nearest neighbors. 
Conceptually, when the embedding dimension is insufficient, the state trajectory is compressed 
into a lower dimensional space. Then, some points which are close to each other in the 
lower-dimension space may turn out to be far away if a larger embedding dimension is adopted. 
These points are called false nearest neighbors. Thus, one can gradually increase the embedding 
dimension while examining the number of FNN. When the number of FNN saturates at a 
minimum value, the very dimension will be the embedding dimension required to fully unfold 
the trajectory.  

Two dynamical analysis indicators including the correlation dimension and the 
maximum Lyapunov exponent are employed in this study to detect the possible existence of the 
chaotic behaviors in the flying vibratory system. The correlation dimension is a measure of the 
complexity of the reconstructed phase trajectories. The idea is that a point located in a densely 
populated neighborhood will contribute more to the correlation dimension than those located in 
a sparsely populated neighborhood. To calculate the correlation dimension, one calculates the 
distances between pairs of points in the pseudo space, i.e., jiij xx −=s , using the 
conventional Euclidean distance. For a data set, { }Nxxx ,,........., 21 , with the total number of 
points equal to N, the correlation function is defined as 

( )∑ ∑
−

= +=

−−
−

=
1

1 1)1(
2)(

N

i

N

ij
ji xxrH

NN
rC ,    (1) 

where r is a chosen ball size and H  denotes the Heaviside function. For many attractors, the 
correlation function has been found to exhibit a power law dependence on r  as , namely, 

.  Thus, the correlation dimension is defined by 
0→r

d

r
arrC =

→
)(lim

0

r
rCd

r log
)(loglim

0→
=        (2) 

In general, the correlation dimension calculated from the reconstructed phase trajectory 
depends on the embedding dimension. However, for a chaotic system, the correlation 
dimension tends to saturate when the embedding dimension is larger than a critical value [8]. 
The saturation phenomenon can serve as an indicator for detecting the existence of chaotic 
dynamics. 

The Lyapunov exponent is a measure of the sensitive dependence on initial conditions. 
Two points initially separated by an infinitesimal distance ε  along a direction will, on the 
average, have their separation growth (or shrinkage) as . The rate tλeε λ  is the Lyapunov 
exponent for the direction. If the embedding dimension is m, then there will be m independent 
evolving directions in the phase space, leading to m Lyapunov exponents. The Lyapunov 
exponent can be positive or negative depending on whether the trajectory expands or contracts 
along one specific direction. The system is chaotic if the maximal Lyapunov exponent is 
positive while the rest of the exponents are negative.  

4. IDENTIFICATION RESULTS  

The procedures outlined in the previous section are applied to the five signals V , V , V  V  
and V . Although not shown here, all five signals have more than one natural frequency, and 
the higher harmonics are not exact integer multiples of the fundamental ones.  Therefore, to 
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avoid possible influences of the higher harmonics, the dynamical analysis indices will not be 
calculated according to the Poincare maps extracted using a simple frequency.  Instead, both the 
dynamical analysis indices are determined using the reconstructed pseudo phase trajectories.  
The correlation dimensions with different embedding dimensions for the 5 signals are shown in 
Fig. 3.  In Fig. 3, the results of two benchmark signals ─ random signal (uniform distributed) 
and Lorenz signal ─ are also included for comparison purpose. The results reveal that V  V  
and V  are likely to be chaotic (because their correlation dimensions saturate when m is larger 
than 8) , whereas V  and V  are random-like. 
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Next, the maximal Lyapunov exponent is computed using the algorithms proposed in 
[9] and from the reconstructed pseudo phase trajectories of the five measured acceleration data. 
Table 1 shows the averaged correlation dimension (averaged from the correlation dimension 
corresponding to m=8 to 13) and the maximal Lyapunov exponent of the 5 signals. It can be 
found that the results of correlation dimension are consistent with those of the maximum 
Lyapunov exponent. They both point out that V , V  and V  are chaotic, whereas V  and V  
are random-like.  
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5. VERIFICATIONS USING STATISTICAL ANALYSIS  

To verify the results obtained using the dynamical analysis tools, a sequence of two statistical 
tests are adopted.  Both statistical tests are based on the correlation function.  The two tests can 
be implemented sequentially. Firstly, the BDS test begins estimating a coefficient W which can 
be defined as follows 

mS
TrmBTrmW ),,(),,( =      

where [ ]mTrCTrCTTrm ),,1(),),,( −=
)T

t o

t

and  represents the standard deviation of 
.  The BDS test also associates with the null hypothesis “Ho:Yt is iid”.  Based on the 

null hypothesis, Y  is iid if H  is accepted.  If Y  is not iid, the absolute value of W  
will be larger than the critical Z value of the standard normal distribution assuming say 5% 
significance level. If Y  is iid, no further testing is required.  Otherwise, the 

mS
(mB

t

β  test will be 
applied to determine whether Y  is generated from deterministic chaos or nonlinear stochastic 
process. 

t

Table 2 shows the computed W values of the BDS test with respect to the random, the 
Lorenz data, and the five-channel acceleration signals.  Every BDS result presented in Table 2 
was conducted on 15000 points in the pseudo space with the ball size σ5.1=r  where  is the 
standard deviation of the tested data.  The embedding dimension ranges from 2 to 13 while the 
critical Z is equal to1.96. It can be observed from Table 2 that all the W values of the Lorenz 
data are much larger than the critical Z value.  In contrast, all the W values associated with the 
random process are well below 1.96. The results obtained from the five-channel acceleration 
data are more moderate.  However, one can still conclude that all the acceleration signals are 
not iid or random data, because their W values are larger than 1.96. Among the five-channel 
data, V1 and V3 are the most deterministic ones while V8 is the least deterministic one.  V6 also 
rejects BDS H0 although its W values are not as large as those of V1 and V3. 

To determine whether the three-channel acceleration data are deterministic chaos or 
nonlinear stochastic, the  test is applied next. The β  test examines if the correlation 
dimension of the tested series changes dramatically when its data points are randomly shuffled.  
Intuitively, the more complex the tested series is, the lesser the effect of shuffling on the 
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estimates of the correlation dimension will be.  Here, shuffling means that the new index of the 
shuffled series is a random selection of the N index of the original time series.  The β  test 
adopts all estimates of the correlation dimension corresponding to m=3 to 11 and for the tested 
series and its shuffled counterpart.  To this end, the following ratio is defined 

η

∑

∑

=

== 11

3

11

3

)(

)(

m
o

m
s

mv

mv
η       (3) 

where  and v  denote the estimates of the correlation dimension of the shuffled (s) and 
original (o) series, respectively.  Theoretically, if the tested data is iid, 

sv o

1=η .  In contrast, 1>  
when the process is less complex.  For a large population of iid series η  is normally distributed 
with the mean equal to one together with a constant variance.  Now, let  

n

n

i
i∑

== 1
η

β       (4) 

where i  is the number of shuffles. n  is supposed to be larger than (or at least 
equal to) 30 if the sample mean to be approximately normally distributed based on the central 
limit theorem.  Thus, the null hypothesis of the 

n..,,.........2,1=

β  test turns out to be 1: =βoH . The null 
hypothesis is judged based on the standard normal distribution V  defined as  

n
V i

βσ

β 1−
=       (5) 

where βσ  (approximately equates to 0 ) is the standard deviation of the iid population of 438.
η .  H  will be rejected if V  (accepted, otherwise) in which Z =1.645.  Note that in 
order to be checked by the 

o αZ> α

β  test, the tested series has presumably rejected the null hypothesis 
of the BDS test.  To this end, the tested data must be generated from nonlinear stochastic 
process if it accepts the oHβ .   

On the other hand, if the oHβ  is rejected the data could only be generated from nonlinear 
deterministic or coupled nonlinear deterministic process.  In such a case, one proceeds to 
estimate the signal to noise ratio using the following linear-regression model [6] 

V967.070.1 +=ω     (6) 

where V  can be determined using Eq. (5).  Eq.(6) was drawn from experiences obtained in a 
large amount of experiments conducted on data generated from systems with known ω  values.  
Eq. (6) yields a ω  value larger than 20 when the series is generated from a strictly deterministic 
process.  On the other hand, the oHβ  will be accepted for series with 3≤ω .  Finally, a series 
can either be categorized as the result of a strictly deterministic process or a nonlinear stochastic 
process if oHβ  is rejected while 3 20<≤ ω .  

To conduct the β  test, Eq. (3) was adopted for the calculation of η  where the 
correlation dimension ranges from 3 to 11.  For each signal, 3000 data points were selected as 
the original series and 30 shuffles were performed to compute a single β  value. Table 3 
collects the results of all the β  tests conducted on the benchmark and the acceleration data.  
Note again that every single β  value listed in Table 3 is the average of η  based on 30 shuffles.  



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

Also, the oHβ  is evaluated by the inequality V  where αZ> 645.1=αZ .  In this sense, Table 3 
shows that the oHβ  will be accepted and rejected by the random and Lorenz data, respectively.  
Moreover, among the five-channel acceleration data, V , V , and V  simultaneously reject the 1 3 6

oHβ  because all the V  values associated with these data are larger than 1.645.  The results 
imply that these three-channel data could only be generated from the strictly deterministic or 
coupled nonlinear deterministic process.  Although a further check on the signal to noise ratio 
reveals that all the three-channel data have ω  value less than 10, the possibility of these three 
data being generated from the deterministic chaotic process still prevails.  This is because the 
experimental data generated from high-order deterministic chaotic process has been known for 
its low signal to noise ratio [9].  Besides, the results obtained from the BDS  and oH oHβ  
investigations are consistent with those of the dynamical analysis tools. 

β

6. CONCLUSIONS 

This work identifies possible existence of chaotic behaviors in a missile system. Nine-channel 
acceleration signals were measured simultaneously from a missile during a test flight. 
Steady-state acceleration signals were extracted to reconstruct the pseudo phase-space 
trajectories from which the correlation dimension and the maximum Lyapunov exponent were 
computed. Based on the features observed from the computed correlation dimension and the 
maximum Lyapunov exponent, it is found that three out of nine channels of acceleration data 
possess chaotic characteristics. The chaotic characteristics include fractal correlation 
dimension and positive maximal Lyapunov exponents.  These results are crosschecked by a 
sequence of statistical tests, the BDS and the  test. Through the statistical analysis, the 
three-channel acceleration data demonstrating deterministic chaotic features reject the 
possibility of being random noise, which further confirms the possibility of these data being 
generated from deterministic chaotic processes possessing low signal to noise ratio. 
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Table 1 Correlation dimension and Lyapunov exponent for the 5-channel signals 
 

Signal Average 
correlation 
dimension 

Maximal 
Lyapunov 
exponent 

V1 3.40 6.58 
V3 3.58 13.6 
V6 5.05 13.7 
V8 N.A. 0 
V9 N.A. 0 

 
Table 2 The computed W values of the BDS test. 
 

data 
m 

random Lorenz V1 V3 V6 V8 V9 

2 1.55 499 543 201 35 24 19 
3 1.52 534 602 214 35 17 17 
4 1.00 578 698 235 40 2.2 32 
5 0.44 641 824 264 45 5.5 39 
6 0.12 727 995 303 47 9.1 42 
7 0.16 840 1227 354 48 12 46 
8 0.30 985 1540 422 49 13 49 
9 0.53 1172 1963 508 49 15 52 
10 0.53 1411 2533 619 49 16 54 
11 0.52 1716 3305 763 49 17 57 
12 0.49 2107 4353 948 49 17 60 
13 0.58 2610 5779 1188 48 18 61 

 

 
Figure 1 A schematic diagram showing the missile system. 
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Table 3 The results of the β  test based on 3000 data points and 30 shuffles. 
 

  random Lorenz 1V  3V  6V  8V  9V  
V  0.12 24.26 1.96 3.75 1.75 0.25 1.50 
β  0.990 2.94 1.16 1.30 1.14 1.02 1.12 
ω  1.82 25.16 3.60 5.33 3.45 1.94 3.21 

 
 
 
 
 

 
Figure 2 Features of the steady-state nine-channel acceleration signals. 

 
Figure 3 Correlation dimension with different embedding dimensions for various signals 
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