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Abstract 

 

A technique for center manifold reduction of nonlinear delay differential equations with time-

periodic coefficients is presented. The DDEs considered here have at most cubic 

nonlinearities multiplied by a perturbation parameter. The periodic terms and matrices are not 

assumed to have predetermined norm bounds, thus making the method applicable to systems 

with strong parametric excitation. Perturbation expansion converts the nonlinear response 

problem into solutions of a series of non-homogenous linear ordinary differential equations 

with time periodic coefficients. One set of linear non-homogenous ODEs is solved for each 

power of the perturbation parameter. Each ODE is solved by a Chebyshev spectral collocation 

method. Thus we compute a finite approximation to the nonlinear infinite-dimensional map 

for the DDE. The accuracy of the method is demonstrated with a nonlinear delayed Mathieu 

equation, a milling model, and a single inverted pendulum with a periodic retarded follower 

force and nonlinear restoring force in which the amplitude of the limit cycle associated with a 

flip bifurcation is found analytically and compared to that obtained from direct numerical 

simulation. 

1. INTRODUCTION 

Dimensional reduction of nonlinear DDEs has been considered by researchers in the past 

using different approaches.  A center manifold algorithm for constant coefficient DDEs near 

Hopf bifurcation points was first formulated in [1].  Unlike the case for center manifold 

reduction of ODEs [2], the algorithm for DDEs is necessarily stated in the language of 

functional analysis and requires the description of the adjoint system.  The method was first 

applied to a practical system (Hopf bifurcation in machine tool vibrations) much later [3,4]. 

Recently, alternative techniques for dimensional reduction of nonlinear DDEs have been 

proposed.  These include the use of stiff and soft substructures [5], the method of multiple 

scales [6], and a Galerkin projection technique which reduces a DDE to a small number of 

ODEs [7]. It should be noted that all of these techniques are designed for autonomous 

nonlinear DDEs.   

 The study of nonlinear time-periodic DDEs has included the computation of the 

response [8] and the use of normal forms and continuation algorithms.  Much of the practical 
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work in the engineering community has focused on the milling problem which, unlike the 

case of turning, is modeled by DDEs with time-periodic coefficients.  It has been observed in 

numerous studies that, in addition to the secondary Hopf or Neimark-Sacker bifurcation, such 

a system can also exhibit flip or period-doubling bifurcations. The center manifold algorithms 

in [1,3,4] cannot be directly applied to the time-periodic case without additional complexities 

associated with redefining the adjoint equation. Nevertheless a center manifold computation 

for the case of flip bifurcation in single DOF low immersion milling was carried out in [9] by 

assuming that the system can be accurately modeled using a 2-dimensional map of the cutting 

tool’s position and velocity from one instantaneous cut to the next.  For such a system, the 

coefficients are essentially periodically-spaced Dirac delta functions.  The problem of milling 

with a finite cutting time, on the other hand, requires a calculation using functional analytic 

tools to decompose the dynamics on the center manifold [10]. This algorithm is based on 

previous efforts in the mathematical literature to generalize the adjoint equation and formalize 

the center manifold theory for the case of periodic DDEs. The motivation for the present 

paper is in a possible alternative method which does not involve the explicit computation of 

the adjoint. 

 The method here for dimensional or center manifold reduction of periodic DDEs makes 

use of a nonlinear extension of the infinite dimensional monodromy operator defined in [11] 

for linear periodic DDEs. The nonlinear operator maps the initial function onto each 

subsequent delay interval.  Iteration of the nonlinear operator produces the solution via the 

‘method of steps’.  The linear part of this operator has been previously approximated by a 

finite dimensional matrix using a variety of numerical techniques, including orthogonal 

polynomial expansion [12] and collocation [13] for the purpose of stability analysis.  In this 

paper we use the method of Chebyshev spectral collocation which is discussed at length by 

Trefethen [15] and was applied to study the stability of linear periodic DDEs in [13-14].  It is 

assumed that the periodically modulated nonlinearities are multiplied by a perturbation 

parameter. Using a classical perturbation technique, the solution in any interval is expanded 

using the solution from the previous interval in the in the zeroth order part. The expansion 

proceeds in a usual way by powers of perturbation parameter. Collecting terms for like 

powers of the perturbation parameter leads to a series of linear non-homogenous ordinary 

differential equations which are then solved using Chebyshev spectral collocation. Quadratic 

and cubic nonlinearities result in similar nonlinearities in the resulting approximate nonlinear 

DDE solution map. Increased accuracy is obtained by increasing the number of collocation 

points and by adding more terms to the perturbation expansion.  Next, center manifold  

reduction is applied to the nonlinear map. An algorithm that performs center manifold 

reduction on large nonlinear maps in MATLAB
©

 is developed for the purpose of making the 

problem computationally tractable.  

.  

2.  DEVELOPMENT OF NONLINEAR MAP 

 

Consider a time periodic nonlinear DDE given by 

 

                                     
]0,[)()(
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where )(tx  is an n -dimensional state vector and )()( TtAtA += , )()( TtBtB +=  are nn ×  

coefficient matrices with principal period T . Here τ  is a fixed delay and ε  is the 

perturbation parameter. The nonlinear term )),(),((),,( ttxtxftf τβα −=  is a vector-valued 

function, with n components, which is periodic with period T in its third input.  For the 

purpose of simplicity, it is assumed that the delay τ  is the same as the principal period T . 
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(Our method, however, generalizes to T≠τ  case.) Writing equation (1) with the summation 

convention and denoting )()( ττ −= txtx yields 
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ττ ε++=�                                       (2-a) 

 

We now assume that ),,( tf βα  is a polynomial of degree 3 in α and β . That is, we may 

write (2-a) in the form 
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For the linear system obtained by setting 0=ε  in (2), one may analyze stability by 

considering the infinite dimensional monodromy operator which maps the solution )()1(
tx

p−  

in ],)1[( ττ pp −  onto the solution )()(
tx

p  in ])1(,[ ττ +pp . The eigenvalues of the 

monodromy operator, the Floquet multipliers, determine the stability of the linear system. An 

accurate finite dimensional approximation of the monodromy operator, that is, a “monodromy 

matrix”, can be computed using Chebyshev spectral collocation [13-15] and other techniques.  

For the nonlinear DDE (2-b), we will approximate the corresponding nonlinear map 

)()( )()1(
txtx

pp
�

−  by a perturbation series inε . Note that (1) typically has parameters but 

these are not explicitly included in the analysis for now. Obtaining the nonlinear map in a 

parameter dependent (“symbolic”) manner would allow for bifurcation analysis of equation 

(2-b) at the critical points. Later we re-introduce the bifurcation parameter via versal 

deformation theory as in [16] for the ODE case. 

Suppose the solution )(tx  in the interval ],0[],0[ T=τ  for (2-b) is written in the form 

                              ....)()()()()()( 3

3

2

2

10 +++++= ttttttx ξεξεεξξφ                             (3) 

 

Here )(tφ  is a vector of known functions as in (1) defined over ],0[ τ  by translation from 

]0,[ τ− . The functions ,..2,1,0),( =itiξ  are unknown n -dimensional vectors for each power of 

ε . The initial conditions for these unknown vectors are 

 

                        ,...0)0(,0)0(,0)0(),0()()0( 3210 ===−= ξξξφτφξ                       (4) 

 

so that x(0)=φ(τ).  Substituting (3) in (2-b) and retaining terms up to third order, the following 

sequence of linear time-periodic ODEs is obtained after collecting like powers of ε : 
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We now consider a sequence of infinite-dimensional maps corresponding to equations 

(5,6) of the form 
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Here j

iP  denotes a polynomial of homogeneous degree i in its j+1 coefficients. Equation (7) 

is exactly equivalent to (5,6) until one chooses a particular finite representation for the 

infinite-dimensional vector wm  corresponding to an arbitrary function )(tw .  Using equations 

(3,7), we express the solution )()( )(
txtx

p=  in an interval ])1(,[ ττ +pp  as a nonlinear 

transformation of the solution in the previous interval ( 1)( ) ( )p
t x tφ −=  in ],)1[( ττ pp −  as 

 

                           )()()()()( 33221

φφφφ εεε mPmPmPmVIpmx ++++=                        (8) 

 

which is exactly equivalent to equation (1) with the perturbation expansion of  (3).  In the this 

paper we do not discuss the numerical approximation of this nonlinear map in detail using the 

method of Chebyshev collocation.  For more information we refer the reader to [13-15].  

 

3. CENTER MANIFOLD REDUCTION 
 

The nonlinear map in equation (8) can be written for a particular value of ε  as 

 

                                     32 )]([)]([)()1( kmCkmCkUmkm xCxQxx ++=+                          (9) 

 

where )1( +kmx  is the collocation vector in a particular interval, )(kmx  is  the collocation 

vector in the preceding interval, i

x km )]([  is the vector of all the possible independent 

nonlinear terms of the order 3,2=i  of the collocation vector )(kmx  and, QC  and CC  are the 
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quadratic and cubic coefficient matrices. The order of nonlinearities in i

x km )]([  is a 

lexicographic order. The coefficient matrix QC will have appropriate entries for each of the 

nonlinearities appearing in the map.  

In equation (9), only up to cubic powers of nonlinearities are retained, even though the 

powers in equation (8) are of much higher order. If n is the dimension of the state space in 

equation (1) and N is the number of Chebyshev points used in collocation, then there are 

)(
2

1

nNoi
nN

i

=∑
=

 independent quadratic and )(2/)1(
3

1

nNoii
nN

i

=+∑
=

 independent cubic terms.  

Equation (9) can be written in the modal coordinates by means of a modal 

transformation of the state  

 

                                         )()( kmMkm zUx =                                                       (10) 
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−− ++=+                  (11) 
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Here, UM  is the modal decoupling matrix, UJ  is the Jordan canonical form of U  and, 2M  

and 3M  are the matrices resulting from the quadratic and cubic terms in equation (11) 

because of the state transformation (10). Now the states can be partitioned according to the 

eigenvalues of 
UJ  into center and stable states as 
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and a modified method of center manifold reduction for nonlinear maps [30] is applied to 

equation (13). A nonlinear transformation is defined of the form 
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where 2U  and 
3U  are undetermined coefficient matrices of quadratic and cubic terms. 

Substituting equation (14) into equation (13), a nonlinear algebraic equation of the form 
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is obtained with the independent variable k suppressed for brevity. Only quadratic and cubic 

terms are retained in equation (14) and then coefficients of the like powers are collected for 

determining  2U  and 3U .  The resulting coefficient equations for quadratic and cubic terms 

are   
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with 
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1. =)]([ sM

QCs  surviving coefficients from matrix sM

QC ][ due to order 2 truncation 

 

2. =cµ  a coefficient matrix resulting from squaring each element of vector zc

c
mµ         

 

and 
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with 

 

3. =)]([ sM

QCs  surviving coefficients of matrix sM

QC ][ due to order 3 truncation 

 

4. =× )],[][( 2

zszc

cM

Qzc

c mmCmcs µ  surviving coefficients of the coefficient matrix 

resulting from the product in the parentheses, due to order 3 truncation   

 

5. =)],[]([ 2

zszc

cM

Q mmCcs  surviving coefficients of the coefficient matrix resulting 

from the term in the parentheses due to order 3 truncation 

 

6. =sµ̂  a coefficient matrix resulting from cubing each element of vector  
zc

s
mµ  

 

Equations (15) are linear generalized Lyapunov equations which are solved for unknown 

coefficient matrices 2U  and 3U  by using Kronecker products. Solving (15-b) first for 2U  and 

(15-c) later for 3U  using 2U , the original map (13) yields a one- (for fold and flip 

bifurcations) or two- (for secondary Hopf bifurcations) dimensional map on the center 

subspace given by  

 

                                  3

3

2

2 )]([)]([)()1( kmakmakmkm zczczc

c

zc ++=+ µ                          (16)  

4. EXAMPLE 

Consider the single inverted pendulum in the horizontal plane with a linear and a quadratic 

torsional spring at the base, a linear torsional damper at the base, and acted upon by a T-

periodic follower force proportional to the delayed (with delay period T) angular 

displacement. The equation of motion is given as 

 

                   0))()(sin()]cos([ 21

22 =−−+++++ TtqtqltPPqkqkqcqml nl ηω���            (17) 

 

where ωπ /2=T  and m  is kilograms, l  is in meters, c  is torsional damping in N.m.s/rad, lk  

is a linear torsional stiffness and nk  is nonlinear torsional stiffness in N.m/rad. Expanding in a 

Taylor series about the zero equilibrium position and retaining up to cubic terms, equation 

(17) can be written in the state space form with mltPPP /))cos(( 21 ω+=  and )()( tqtx = . 

Also, )6/()/( 32
mlmlkn η= can be designated as ε , which conforms to the form of equation 

(1). At a particular parameter set given by 
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the system undergoes a flip bifurcation which is evidenced by a -1 eigenvalue of the 

monodromy matrix )( VI +  in equation (8). We choose 2/ mlc  as the bifurcation parameter.  

The numerical center manifold algorithm is programmed in MATLAB and applied to 

system (17) with parameter set (18) with N=32 (collocation points) and n=2 (states) which 

translates into a map having a 64-dimensional collocation vector, 2080 quadratic terms and 

45760 cubic terms. The size of the coefficient matrices are 64 x 2080 and 64 x 45760, for 

quadratic and cubic terms, respectively. The reduced scalar map on the center manifold takes 

the form of equation (16) with γµ +−= 1c  where γ  is a versal deformation parameter and 

0511.0,3310.0 32 −=−= aa . The post-bifurcation limit cycle amplitude is derived using the 

second iterate of equation (16) as 

 

                         3( 2) (1 2 ) ( ) 2 ( ( ))zc zc zcm k m k m kγ δ+ = − −                                   (19) 

 

where 2

2 3a aδ = +  and terms higher than cubic have been dropped.  The fixed points of 

equation (19) (from which the amplitude of the periodic orbit can be recovered) are obtained 

by setting )()2( kmkm zczc =+  as  

 

                                                       
2

2 3

( )zcm k
a a

γ
= ± −

+
                                              (20) 

 

where 1+= cµγ . Now the bifurcation parameter 2/ mlc  (which was temporarily omitted to 

allow for the numerical computations) is re-introduced (compare with [33] for the ODE case) 

by computing the gradient cg  of γ with respect to 2/ mlc .  This is found to be =cg 0.5195 

and hence 0583.0=δ  which implies that the bifurcation is super-critical. Using equation 

(20), with )/( 2
mlcgc∆=γ , the amplitude of the limit cycle is computed and compared with 

the one obtained from the direct numerical simulation. Figure 1 plots the displacement and 

velocity variables for equation (17) for half the doubled period after steady state is reached 

computed via the MATLAB DDE23 routine and the proposed Center Manifold Algorithm. 

The center manifold calculations confirm the amplitude and the doubled period. 

5. CONCLUSIONS 

A method to compute center manifold reductions of delay differential equations with periodic 

coefficients has been proposed and illustrated. The method uses classical perturbation analysis 

assuming that the nonlinearities are multiplied by the perturbation parameter. An approximate 

nonlinear map is constructed using Chebyshev spectral collocation which takes the solution in 

each interval of length equal to the principal period to the solution in the next interval. The 

method can be extended to the analysis of Hopf bifurcation and to order reduction problems 

associated with DDEs with periodic coefficients. The scope of the systems considered can 

also be widened by considering DDEs with a rational relationship between the delay and the 

principal periods. The use of versal deformation theory allows a bifurcation analysis in terms 
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of a parameter as shown in the example, although the nonlinear map is numerically 

constructed (using MATLAB) to allow for computational tractability. 

 

Figure 1. Displacement and velocity for equation (17) for half of the doubled period with 

DDE23 (+) and Center Manifold Algorithm (continuous) 
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