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Abstract 
 
Recent research has suggested that the contact mechanics between the wheel and rail in 
railway systems may act as a geometric filter for wear-type rail corrugation. This filter is 
hypothesized to work alongside the dynamics to create the wear pattern, attenuating some 
wavelengths (and associated frequencies) while promoting others, and hence influencing the 
spectra of noise produced. It has been proposed that this effect may give rise to the field 
observation of the speed insensitivity of the dominant wavelength of short pitch corrugation. 
This type of corrugation is responsible for an annoying tonal noise in the range of 500-800 
Hz. 

In this paper a simplified model of the wear due to the rolling contact of a wheel over a 
general rail profile is presented. This model is simple to implement and allows for an 
investigation into the non-linear behaviour of the dynamic wear, not discussed in previous 
research. The relevance of these results to the transportation noise phenomenon of wear-type 
rail corrugation is discussed. 

1. INTRODUCTION 

Rail corrugation is a significant problem in railway engineering, which manifests as an 
unwanted periodic wear pattern that develops on the surface of the wheel and rail with use. 
This variation from a flat profile induces unwanted vibrations, noise and other associated 
problems. Currently the only reliable method to eliminate corrugations is removal by grinding 
at significant expense to the railway operator. For a comprehensive review on recent 
corrugation studies refer to Sato et al. [1]. 

One difficult to explain feature of wear-type rail corrugation is the apparent insensitivity 
of corrugation wavelength to vehicle speed, when the dominant wavelength is short. This 
implies that the vibration dynamics alone may not be sufficient to describe the evolution of 
corrugation. For a discussion of this trend refer to Grassie and Kalousek [2]. To explain this 
behaviour it has been hypothesized in some studies that a geometric filter due to the contact 
mechanics of the wheel and the rail may be present. It is well understood that the dynamics of 
the wheel/rail system are insensitive to wavelengths shorter than the contact patch, the so-
called contact filtering effect. One of the most renowned contact filters is that proposed by 
Remington [3]. Remington derived an semi-analytic model for how the roughness spectrum of 
the rail profile influenced the wheel/rail dynamics, primarily concerned with modelling 
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observations of noise spectra. This model predicts that very short wavelengths will have little 
effect on the wheel/rail dynamics. In this paper however, we are concerned with how the 
deformation of the wheel and rail due to the initial rail profile influence the subsequent wear 
that occurs, hence the results of [3] are not directly applicable. It has been proposed in Muller 
[4], Nielsen [6] and Wu and Thompson [6] that this contact mechanics induced wear provides 
a band in which a range of corrugation wavelengths are amplified. 

In [5] an interesting model of the contact mechanics between a smooth and a corrugated 
cylinder has been developed by considering an infinite series of sinusoids to describe the 
corrugation and using this to solve the contact integral equations. This provides qualitative 
evidence of an amplification band due purely to the contact mechanics, but does not quantify 
how significant this effect may be in terms of corrugation growth rate with realistic parameter 
values. Also the effect of corrugation amplitude on the filter was not investigated. In [6] the 
contact mechanics are simplified by making use of the Carter solution for the tangential 
contact problem and a varying relative curvature. This is combined with a varying normal 
force and the wear behaviour is investigated; however there is no quantification of the 
filtering behaviour of the contact mechanics and the effect of a time dependant shift of the 
contact patch is neglected in the analysis.  

In this paper the contact mechanics induced wear is modeled by using a truncated 
Taylor Series of the corrugated profile and using a modification of the Carter Solution for the 
rolling contact between two smooth cylinders, which takes account of the varying relative 
curvature of the surfaces and the shifting of the contact patch. From this model the wear due 
purely to the contact mechanics of traversing a corrugated profile is much more easily 
calculated, allowing an investigation into the non-linear behaviour of the wear that has not 
previously been performed. The relevance of these results to the transportation noise 
phenomenon of wear-type rail corrugation is discussed. 

In particular the novel contributions of this paper are 
1) Development of a closed form analytical solution for an extended Hertzian model 

of the normal and tangential contact problems for the rolling contact of a wheel 
and a general rail profile and the subsequent evaluation of the wear profile history. 

2) Quantification of this wear filtering effect in terms of corrugation growth rate. 
3) Investigation and discovery of the nonlinear behaviour of the filter in relation to 

corrugation amplitude. 

2. HERTZ AND CARTER CONTACT MODELS 

It is necessary to first review the Hertz and Carter Solutions for an uncorrugated profile to 
provide the basis for developing the extended theory where corrugations are present. In this 
model we are concerned with the quasi-static elastic contact of two 2D bodies as shown in 
Fig. 1.  

 
Figure 1. Elastic Contact of two non-conformal bodies 
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It is assumed that the contact is non-conformal and that a one point contact occurs, 

which can be assured by only looking at cases where there is a sufficient difference in the 
curvature of the bodies. The normal pressure distribution for the contact between two 2D 
bodies under the elastic half space approximation can be shown (see Johnson [7]) to be given 
by, 

( ) ( )1 22

( ) ( ) ( )
4 1
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a

p E dd Z x Z x
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ζ πζ
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= −
− −∫ ,        (1) 

 
where Z1(x) and Z2(x) are the shapes of the undeformed bodies, x is the local longitudinal 
coordinate, E is the Elastic Modulus of the bodies, υ is Poisson�s Ratio for the two bodies, ζ is 
the longitudinal position and p(x) is the normal pressure distribution. 
 The solution of singular integral equations like Eq.(1) is described in Muskhelishvili [8]. 
In the general case it is difficult to find a simple expression for the pressure distribution. The 
Hertz solution of the contact between two cylinders makes a second order Taylor Series 
approximation to the undeformed profiles (representing the cylinders as quadratics), i.e. 
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where Ri is the radius of the ith undeformed cylinder. Under this approximation it can be 
shown by using Eq. (2) in Eq. (1) that the solution for the pressure distribution will be given 
by, 
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 and N is the normal force. In Eq. (4) a0 is the half contact patch width, i.e. a = - a0 and b = a0.
 The solution to the tangential contact problem, where a torque is applied to one of the 
cylinders in the above problem, is given by the Carter solution [9]. The solution to the 
tangential stress distribution q(x) is given by the sum of two ellipses as 
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µ is the friction coefficient and ξ0 is the creepage (the relative velocity of the bodies 
normalised by the mean velocity). It can also be shown that for low values of creepage that 
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where Q0 is the tangential force. Furthermore the local relative velocity (or slip), s, between 
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the bodies can be shown to be given by, 
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Eq. (9) shows that within the contact region there will be a �stick� zone with no local relative 
sliding velocity and also a �slip� zone. In the model developed in the next section, only the 
contact conditions in the slip region will be important because no frictional work, and hence 
no wear, will occur in the stick region. 

3. EXTENDED HERTZIAN ROLLING CONTACT OVER A GENERAL RAIL 
PROFILE 

In this section a model for the rolling contact of a cylinder over a general profile will the 
developed. The purpose of this model is to provide a simple method of investigating and 
quantifying the contact filtering effect on roughness discussed in [4], [5] and [6].  
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Figure 2. Wheel-Rail Contact. 
 
To do this Eq. (1) is solved when one undeformed body is given by the superposition of 

a cylinder and a general profile as shown in Fig. (2), i.e. 
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where g(x-Vt) is the general profile, moving under contact with velocity V. In [5] Eq. (1) is 
solved by assuming that the roughness profile, g(x), can be represented as an infinite series of 
sinusoids. In this paper a truncated McLaurin Series of the moving profile, as given in Eq. 
(10), will instead be taken to allow closed form solutions for the normal pressure distribution 
and traction. Using the series expansion approximation for Eq. (10) in Eq (1) gives,  
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First the new variable R* is introduced, and the coordinates transformed according to  
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which when substituted into Eq. (11) yields 
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Eq. (13) is simply the integral equation used to derive the Hertz Solution (Eq. (1)), perturbed 
to account for the undulating profile. Thus by comparing Eq. (13) to the solutions shown in 
Eq. (3)-(9), the solution for the normal pressure can be derived as, 
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Where p0 and a0 are now functions of time defined by, 
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 Similarly the modified Carter solution for the tangential stress distribution in the slip 
region will be given by,  
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and the creep and traction relations remain the same as Eq. (8), with the new definitions given 
by Eqs. (12) and (17). 
 Note that the solution given is general in a sense as it is valid for any initial profile g(x). 
These solutions for the normal and tangential contact problems will be valid for a wide range 
of initial profiles provided the amplitudes are small enough and the wavelengths long enough 
to avoid a multiple point contact, specifically when Aω2 << 1/R where A is the amplitude and 
ω is the angular spatial frequency of the corrugation. 

Fig. 3 depicts the evolution of the pressure distribution as it passes over an arbitrary 
surface. Two important properties of the solution can be observed. The first, depicted in Fig. 
3a) and 3b), is the shift of the contact patch centre forwards uphill and backwards downhill, 
which can be observed in Eq. (14), where the shift is a function of the slope of the profile,  
g'(-Vt). The other property of the solution, depicted in Fig. 3c) and 3d), is that the pressure 
distribution becomes narrow and tall on the peaks and short and fat in the troughs of the 
corrugation, which can be observed in Eq. (15) where a0 and p0 depend on the second 
derivative of the profile, g'' (-Vt). These properties are important when considering the change 
in frictional power which occurs in the slip region as the wheel traverses the rail profile. 
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Figure 3. Wheel-Rail Contact Solution Behaviour. Shaded area indicates slip region. 

4. WEAR DUE TO ROLLING CONTACT 

To evaluate how much wear this rolling contact induces the frictional work hypothesis shall 
be used. The frictional work hypothesis states that the wear rate is proportional to the amount 
of frictional work done, i.e. 

frictionPk
dt
dm

0= ,       (18) 
 
where m is the mass of material removed, k0 is the wear coefficient and Pfriction is the frictional 
power. In this paper the primary concern is the change of profile height at each point along 
the rail, thus transforming Eq. (18) into this form yields 
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where W(x) is the profile height change at position x, ρ is the density and Vcontact is the speed 
of the contact patch, which is found from 
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5. SIMULATION RESULTS 

To examine the behaviour of the rolling contact wear model, the integral in Eq. (19) has been 
evaluated numerically, using the intermediate equations from section 4 and the assumption of 
constant traction force. This allows the profile change after one pass to be evaluated. In this 
case the initial profile was chosen to be a sinusoid, so as to approximate the wear on a 
corrugation and also to allow analytic solutions for the profile derivatives to be used. 
Evaluating multiple iterations of the same profile would require an estimate of these 
derivatives to be made after each pass. Since it is unlikely that an analytic solution to Eq. (19) 
can be developed, numerical estimates of the derivatives of the new profile would be required, 
which shall be examined at a later date. 
 The simulation parameters are chosen to represent those that may occur in practice in 
the contact between a rail and a wheel (see for example [10]) and are summarized in table 1. It 
should be noted that the solutions obtained are independent of V, which is to be expected as a 
faster velocity may cause more wear per unit time, however this wear will be spread over a 
larger distance, cancelling any speed dependence of the spatial wear. 
 

Table 1. Simulation Parameters 
k0 [kg/Nm] 5 × 10-9 b ( contact width) [m] 0.01 ρ [kg/m3] 7700 
P [N] 66000 E [N/m2] 2.1 × 1011 υ 0.29 
Q [N] 3000 R [m] 0.46 µ 0.4 

(a) (b) (c) (d) 
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The first simulations are intended to show the non-linear nature of the wear. The wear in 
space is shown in Fig. 4 for long (10cm) and short (2cm) wavelengths, with an initial 
amplitude of 10 microns. It can be seen in this plot that for long wavelengths more wear 
occurs in the troughs than on the peaks, which causes an amplification of the corrugations 
peak to peak amplitude. This is due to the second property identified in section 3 of the 
contact patch and slip region becoming larger in the trough due to the more closely conformal 
contact and dissipating more frictional power. In the shorter wavelength case the maximum 
wear no longer occurs in the initial profile trough, but slightly offset to it. This may be 
ascribed to the asymmetrical nature of the distribution of frictional power in the contact patch 
and also the motion of the contact patch (the first property described in section 3). In the long 
wavelength case, it can be seen that the wear is approximately sinusoidal, whereas in the short 
wavelength case it is clearly not. This indicates that the wear is becoming non-linear as the 
wavelength decreases. 
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Figure 4. Profile and wear after traversing long (10cm, left) and short (2cm, right) wavelength 
corrugations. 
 
 To show the amplifying behaviour of the contact induced wear, the ratio of the root 
mean squared (RMS) value of the worn profile over the initial profile has been calculated to 
obtain an exponential growth rate parameter equivalent to that used in [10], i.e. 
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Thus if this growth rate, Gr, is greater than zero the profile will be growing and if it is less 
than zero it will be diminishing. The result of this analysis is shown in Fig. 5 for a range of 
initial profile amplitudes. 
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Figure 5. Ratio of profile RMS values. Left plot shows results for initial amplitudes of 1, 5, 10, 50 and 
100 microns. Right plot shows close-up for initial amplitudes of 1, 2, 3, 4 and 5 microns. 
 
It can be seen from Fig. 5 that a wavelength band does seem to be actively promoted, as found 
in [4], [5] and [6]. However, in contrast to previous findings, it can also be seen that the 
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amount of amplification tends to be stronger with smaller amplitudes. This implies that the 
contact mechanics induced amplification and filtering is non-linear and is more significant for 
the corrugation initiation phase. It is further apparent that the peak of the amplification shifts 
slightly to longer wavelengths as the amplitude becomes larger. The order of the amplification 
is also similar to observed growth rates of approximately 5 × 10-6 [11] for amplitudes smaller 
than 10 µm but becomes insignificant for amplitudes larger than 50 µm. This indicates that the 
wear contact filtering effect on corrugation growth is only significant for small amplitude growth. 

6. CONCLUSIONS 

An extended Hertzian model for the wear due to a rolling 2D contact is presented. Numerical 
integration of the model for realistic railway parameters has been performed in order to 
quantify the magnitude of contact filtering effects and also to investigate non-linear 
behaviour. It is shown that a mid-wavelength amplification band exists for this model in 
accordance with previous research. However, the form of the solution provides full insight 
into the mechanism that may cause the profile amplification and its non-linear behaviour. The 
filtering effect is quantized and shown to be comparable to field measurements of growth 
rates only when corrugation amplitudes are small. It is also shown that the amplification peak 
decreases with corrugation amplitude and shifts to longer wavelengths. 
 Extensions of this work that are under consideration are the evaluation of the contact 
behaviour with parameter variations, the evaluation of the profile evolution over multiple 
passes and the comparison with numerical solutions to the contact integral equations in 2D 
and 3D. 
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