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Abstract 
 
The axial elastic modulus is one of the most important parameters of the sandwich cylinder, 
which is made of metal and one or two kinds of complex material. But it was difficult to 
measure the elastic modulus exactly by means of routine material test because the cylinder was 
not easy to be made into a standard specimen. This paper presents a non-destructive method of 
measuring the axial elastic modulus of the sandwich cylinder based on modal testing. In this 
method, the axial elastic modulus can be determined by solving the bending vibration equations 
of the cylinder, and the modal testing provides the required bending frequencies in the 
equations. The shear modulus can also be determined simultaneously. The method was proved 
to be practicable by measuring an aluminium cylinder whose elastic modulus is known, and the 
errors were evaluated. The results of testing sandwich cylinders are also presented. 
 

1. INTRODUCTION 

The cylinder studied in this paper is made of metal and one or two kinds of complex material, 
therefore it was called sandwich cylinder. The sandwich cylinder is a primary part of a rotor. 
The highest rotary speed of this rotor is restricted by its critical speed when the rotor is 
sub-critical, and the critical speed has relations with the axial elastic modulus of the cylinder. 
So the axial elastic modulus is one of the most important parameters of the cylinder. But the 
elastic modulus was difficult to be measured by means of conventional material parameters test. 
There were two reasons, one was that the cylinder was not easy to be made into a standard 
specimen, the other was that the edges of specimen were usually broken before getting the test 
results during the conventional material test even if the cylinder was made into the 
non-standard test specimens. Furthermore the sandwich cylinder was not expected to be 
destroyed in most of conditions.  

In the last decades, the use of dynamic test techniques for the elastic characterization of 
both isotropic and anisotropic materials has increased due to their non-destructive nature, 
simple operating procedures and superior precision over the static test methods[1]. And this test 
technique has also been applied in the identification of elastic properties of sandwich 
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materials[2]. A practicable method of measuring the axial elastic properties of the sandwich 
cylinder based on modal testing was introduced in this paper. The first step of this method was 
to get the bending vibration frequency equation relating the nature bending frequencies to the 
axial elastic properties of the sandwich cylinder. Then the required frequencies were provided 
by means of the modal testing. So the axial elastic modulus and shear modulus can be 
determined by solving the frequencies equations. 

2. THEORY OF THIS MEASURING METHOD 

2.1 Bending Vibration Equation of Cylinder 

The key of the dynamic test method is the frequency equation relating the nature frequencies to 
the elastic properties, mass and dimension. The frequency equation for determining axial elastic 
properties of the constant section shell cylinder can be obtained by solving the following 
differential equation of motion [3] 
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Where y is the displacement, E is the axial young’s modulus, G is the shear modulus, J is the 
section moment of inertia, ρ is the density, S is the area of section, and K is the section constant 
which depends on the dimension of section. K is 0.5 for the shell cylinder. The first two parts of 
equation (1) is the beam vibration differential equation, the third and the fourth part express the 
effect of the rotary inertia and shear deformation respectively. 

In general, the solution of equation (1) is  
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Now substituting (2) into (1), the following equation can be got 
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Then substituting xexY λ=)(  into (3), the equation (3) can be written as 
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Solving the quadratic equation in which λ2 is unknown, the following results can be obtained 
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Equation (5) can be written as several expressions according to the value of a1 and a2. Now only 
one of the expressions is presented. 

When a2 > a1 and a2 >- a1, the latent roots of equation (4) are 
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written as follows 
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Thereby, the solution of the differential equation (1) can be calculated to be the form 
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Moreover, the expressions of angle θ(x,t), moment M(x,t) and shearing force Q(x,t) can be got 
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Then, according to the free-free boundary conditions (l is the length of the cylinder), 
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The frequency equation can be obtained as following 
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The nature bending circular frequencies, ωn, can be obtained by solving the equation (9). 

2.2 The Process of Calculating the Axial Elastic Modulus 

The sandwich cylinder is made of metal and one or two kinds of complex materials. The 
structure of the cylinder is shown in figure 1, the basic structure is metallic thin shell cylinder, 
and a fibre composite wraps around the outside of the metallic cylinder, then another fibre 
composite wraps again.  

The axial elastic properties of this sandwich cylinder were emphasis in this work. In 
theory, the elastic properties of every material in the sandwich cylinder can be measured. But in 
fact, it was difficult to do because that the winding technology is wet winding and the thickness 
of each complex material cannot be measured exactly. So the axial elastic properties studied in 
this paper are equivalent elastic properties, which include the elastic properties of metal and the 
two complex materials.  

 
metal 

 

complex 

another 
complex 

Figure 1. Sketch of the sandwich cylinder 
 

Equation (9) can also be written as the following form 
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Where ωn is the nature bending circular frequency, Ee is the equivalent axial Young’s modulus, 
Ge is the equivalent axial shear modulus, M is the mass of the sandwich cylinder, ro, ri, and l are 
the outer radius, inner radius and length of the cylinder respectively. 

M, ro, ri, and l can be obtained accurately by measuring the cylinder. And if the two nature 
bending frequencies are known, the Ee and Ge can be calculated by solving the following 
equations. 
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Two equations and two frequencies were needed in this method because Ee and Ge were 

unknown. If the relation of Ee to Ge is known, i.e. only one unknown number, just only one 
equation and one frequency are sufficient. 

The equations (11) can only be solved numerically because of the nonlinearity. So the 
Monte Carlo Method was used to solve the equations [4], and a Fortran calculation program was 
programmed. 

A numerical example was used for verifying the convergence of the calculation program. 
The example is an imaginary aluminium shell cylinder. And the first two order bending circular 
frequency, ωn1 and ωn2, can be got by solving equation (10) when Ee is 68.00 GPa and Ge is 
25.56 GPa. 

Then substituting ωn1, ωn2 and different initial values of Ee and Ge into (11), Ee and Ge can 
be obtained by solving the equation (11). The convergence results of the different initial values 
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are shown in table 1. There were almost no errors between the calculational results and the 
actual values. 

 

Table 1. The convergence results (GPa). 

initial values results actual values 
Eei Gei Ee Ge Ee Ge 

80.00 30.00 68.00 25.56
50.00 25.00 68.00 25.56
100.00 35.00 68.00 25.56

68.00 25.56

 
 But the convergence depended on the choice of initial values, so the appropriate initial 
values were important in the calculation program. 

2.3 The Choice of Initial Values 

If the effect of the rotary inertia and shear deformation is neglected, the equation (1) can be 
written as the following form 
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For free-free boundary conditions, the frequency equation of equation (1) is [3] 
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If the first order circular frequency is known, the elastic modulus can be obtained,  
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 The initial value for the equivalent elastic modulus of the sandwich cylinder with 
free-free boundary conditions could be obtained through the following steps. 
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 Firstly, the elastic modulus and shear modulus used in the equation (1) could be given 
experiential values. Then substituting these values, dimension and mass values of the sandwich 
cylinder measured here into the equation (9), the nature circular frequency, ωn11, can be 
obtained. Similarly, the other nature frequency, ωn12 can also be got by solving the equation 
(14). So the correctional coefficient of the testing frequency was given by 
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 Secondly, assuming that fexp is the nature bending frequency measured by the modal 
testing, the correctional frequency, fcor, can be given by the following formula 
 

γexpcor ff =                                                                   (17) 
 

 Finally, the initial value of elastic modulus can be obtained by solving the equations (15) 
and (17). But the initial value of shear modulus could only be determined through some 
experimental relations of elastic to shear modulus in this method. 
 If the cylinder is relative long, the initial value of elastic modulus can be obtained directly 
basing fexp and equation (15) because the effect of the shear deformation can be neglected and 
the correctional coefficient is close to one. 

3. THE MEANS OF GETTING THE NATURE FREQUENCIES 

Another key of the dynamic test method is how to get the nature frequencies. In general, the 
modal testing is appropriate for this purpose. The MISO modal testing system was adopted to 
get the nature frequencies of the sandwich cylinder in this work. The sketch of the modal testing 
system is presented in figure 2. It mainly consists of an impact hammer (B&K8200), an 
accelerometer (B&K4375), two charge amplifiers (B&K2635), a signal conditioning (AZ208), 
a laptop with the CRASTM modal testing software of NanJing Analyzer Software Engineering 
Ltd. and a testing frame. 
 
 
  

 
frame 

cylinder

elastic ropes 

accelerometer 

impact hammer

charge amplifier

signal conditioning 

laptop 

 
 
 

Figure 2. Sketch of the modal testing system 
 

The testing sample, such as cylinder, was suspended from the frame by two elastic ropes 
to achieve the free-free boundary conditions approximatively. The impact hammer was used to 
make the cylinder vibrate mechanically. And the accelerometer, adhered to the surface of the 
cylinder, was used to pick up the response. The signal was amplified and conditioned by the 
charge amplifier and signal conditioning, then analyzed by the CRASTM modal testing software. 
So the modal parameters and modal shapes of the cylinder can be acquired. One of the 3D 
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modal shapes of the cylinder is shown in figure 3. 
 

 
 
 
 
阶号:    5 
频率:  3034.296 Hz 
阻尼:   0.462% 

Figure 3. Modal shape of the cylinder 

4. THE PROCEDURE AND APPLICATION OF THE MEASURING METHOD  

4.1 The Procedure of the Measuring Method  

The detailed procedure of measuring the equivalent axial elastic properties of the sandwich 
cylinder was 

1. measure the mass of the cylinder. 
2. measure the outer diameter, inner diameter and length of the cylinder. 
3. obtain the first two order nature bending frequencies by the modal testing. 
4. calculate the equivalent axial elastic modulus and shear modulus by solving the 

equations (11). 
 Two aluminium shell cylinders were tested by above procedure in order to evaluate the 
measuring method. The aluminium cylinder was chosen because its elastic properties have been 
well studied. The testing results indicated that the relative errors were less than 3% (see table 2). 
This proves that the measuring method is practicable. 
 

Table 2. Axial elastic modulus of aluminum cylinder (GPa). 

specimen testing actual error (%)
1 # 70.43 0.6 
2 # 71.64 70 2.3 

 

4.2 The Application of the Measuring Method 

The first kind of specimen was two relative long sandwich cylinders, which were made of two 
kinds of fibre composite and no metal material. Table 3 presents the first three order nature 
bending frequencies measured by the above modal testing system. 
 

Table 3. Measured nature frequencies (Hz). 

specimen fn1 fn2 fn3 
1 # 453 1103 1892 
2 # 436 1072 1866 

 
 The measuring results of the equivalent axial elastic and shear modulus are shown in table 
4. The trend of the results is reasonable because the design of the sandwich cylinder shows that 
the elastic modulus of specimen 1 should be higher than specimen 2. 
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Table 4. The measuring results (GPa). 

initial values results specimen Eei Gei Ee Ge 
1 # 36.00 10.00 39.28 12.71
2 # 35.00 10.00 34.72 12.89

 
In order to evaluate this method again, the third order frequency was calculated by using 

the elastic modulus and shear modulus in table 4. The calculation frequencies of the two 
cylinders were 1883 Hz and 1848 Hz respectively. And the relative errors were both less than 
1%. 
 The second kind of specimen was two sandwich cylinders, which were made of a metal 
and two kinds of fibre composite and similar to figure 1. Table 5 is the equivalent axial elastic 
modulus of the two cylinders measured by the above measuring method. The design of this kind 
of sandwich cylinder also shown that the axial elastic modulus of specimen 1 should be less 
than specimen 2. 
 

Table 5. Equivalent axial elastic modulus (GPa). 

specimen initial values results 
1 # 30.00 32.39 
2 # 40.00 41.01 

5. SUMMARY 

In this paper, a measuring method based on modal testing for identifying the equivalent axial 
elastic properties of the sandwich cylinder is presented. And this method is proved to be 
practicable by measuring some specimens. Future efforts will center on uncertainty estimation 
and more applications of this method. 
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