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Abstract 
 
Vibration absorbers have many applications in reducing the undesirable vibration of a system. 
Consider an Euler-Bernoulli beam with arbitrary supports which is under a harmonic point 
excitation that can be set in different positions. The effect of an absorber on reducing the 
vibration of this beam is studied in this paper. Also, to achieve a more accurate analysis, the 
effect of the spring mass on the dynamic equations of the vibrating system is considered .The 
optimum specifications such as spring stiffness, absorber mass and its position are determined 
by developing and using several algorithms under MATLAB environment. Finally, the 
equivalent analog circuit of the problem is simulated using the SIMULINK Toolbox of 
MATLAB. The advantage of this simulation is that one can find the optimum specifications of 
an absorber for a beam with arbitrary supports under any other types of excitation such as 
step, ramp, etc.  
 

1. INTRODUCTION 
 
Dynamic vibration absorbers are used to reduce the undesirable vibrations in many 
applications such as electrical transmission lines, helicopters, gas turbines and engines, 
bridges, etc. One type of absorber is tuneable vibration absorber (TVA) which can act as a 
semi-active controller. Young [1] was the first one who considered the application of 
absorbers on beams. Snowdon [2] discussed the optimization of a discrete absorber on beams 
with various boundary conditions. Jacquot [3] developed a method that can find the optimal 
parameters of an absorber to eliminate the excessive vibration of an Euler- Bernoulli beam 
under sinusoidal excitation. Ozguven and Candir [4] used two dynamic absorbers for a 
structurally damped beam to suppress two first resonances of beams. In several similar 
studies, the optimal specifications of the TVA are adjusted under variable conditions [5-8]. 
Recently, El-Khatib et al. [9] and Brennan [10] and Clark [11] studied the application of a 
TVA to control the flexural waves on a beam. Also, several vibration absorbers with variable 
stiffness have been designed, e.g., Franchek et al. [12] changed the effective number of coils 
in a helical spring. Using the same vibration absorber, Buhr et al. [13] studied the non-
collocated adaptive-passive vibration control. Lio et al. [14] compared two auto-tuning 
methods for a variable stiffness absorber and Nagaya et al. [15] developed a vibration 
absorber for a cantilever beam with a mass at its free end. In this paper, an Euler-Bernoulli 
beam with arbitrary supports under a point harmonic excitation with specific position is 
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considered. Using an algorithm based upon mode summation method, the optimum 
specifications of an absorber such as spring stiffness, absorber mass and its position can be 
determined such that the vibration of the beam is minimized. Also, the effect of the spring 
mass of the absorber is considered in this study. This effect may not be ignored specially in 
the problems in which the mass of the absorber spring is considerable in compare the mass of 
the beam. By changing the length of the spring, its mass and its stiffness can be changed. To 
formulate the problem, mode summation method is used which can be an effective way in the 
analysis of vibration of continuous systems. 
 

2. FORMULATION OF THE PROBLEM 
 
Structures made of several beams are common in engineering fields. Each beam constitutes of 
an infinite number of degrees of freedom, and the mode summation method makes their 
analysis possible as system of a finite number of degrees of freedom. Constraints are often 
found as additional supports of the structure, and they alter the normal modes of system. For 
forced vibration of an one-dimensional structure, a force per unit length ),( txf or moment per 
unit length ),( txM at any location of x  is considered. If normal modes of the structure )(xiφ  
are known, its deflection at any point x  can be presented by: 
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Where the generalized coordinate )(tqi must satisfy following equation: 
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In Eq.2, ρ  is mass per unit length of beam. As an example, for a beam with simple support at 
both ends, the eigenvector at any mode is given as )/sin(2)( lxixi πφ = and iM  will be 

equal to mass of beam M . Natural frequencies of the beam are defined as 2/12 )/( ρβω EInn = , 
where EI  is flexural rigidity and nβ  are coefficients for the first five natural frequencies of 
this beam are: 7.15,56.12,42.9,28.6,14.3 54321 ===== lllll βββββ in which l  is the length 
of beam. If instead of distributed load ),( txf  or moment ),( txM , at some point ax = , the 
concentrated force ),( taF and moment ),( taM  exist, Eq.2 can be written as: 
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2.1 Absorber Made of Mass and Spring 
 
A two ends simply supported beam shown in Fig.1. The absorber and the exciting force are 
placed at positions ax = and bx =  from the left support, respectively. Deflection of the beam 
at absorber location is ),( tay and the displacement of the mass of the absorber is u , therefore 
Eq.3 becomes: 
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Figure 1. Vibration system under harmonic point excitation. 
 

Normal modes, displacement of the absorber and the exciting force can be written in 
exponential form as tititi

ii eFFeuueqq ωωω === ,, . Using these exponential forms and 
substituting Eq.1 in Eq.4 yields:  
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Another vibration equation can be written for the absorber as: 
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Similar procedure done to obtain Eq.5 can be applied on Eq.6 to get: 
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Eqs.5 and 7 are vibration equations of the whole system and can be written as ][]][[ BQA = . 
[ A ] is a full-rank matrix of order )1( +n  with elements that are the coefficients of iq  and u , 
[Q ] is a vertical matrix which its elements are iq  and [ B ] is a vertical matrix of force 
elements available in the right hand of Eqs.5 and 7. If determinant of the matrix [ A ] is set to 
zero, the )1( +n frequencies of the whole system including the beam and the absorber can be 
achieved. To get generalized coordinate iq  and the amplitude of the absorber mass 
displacement u , Eqs.5 and 7 which are )1( +n  equations must be solved simultaneously.  
 
2.2 Absorber Made of Mass, Spring and Damper 
 
An absorber made of a mass, a spring and a damper, as shown in Fig.2 is considered in this 
case. The distance between the spring of the absorber and the left support ( 1a ) is selected as 
a parameter for design. It is assumed (theoretically) that the distance between the damper and 
the spring is constant of d . So for this case Eqs.4, 6 are changed to:  
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Figure 2. Vibration system with absorber contains mass- spring- damping 

 
With similar steps done in the section 2-1, it can be shown that the vibration equations of the 
system shown in Fig.2 cab be expressed as:  
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Where, Mk /=α , mk /=β , MF /0=γ , Mc /=ξ , mc /=η .  
 

3. SPRING MASS EFFECT ON THE FORMULATION OF THE PROBLEM  
 

In the analysis given in section 2, the spring mass was neglected. In many practical cases 
neglecting this mass has an important effect on the dynamic analysis of the system. Velocity 
of spring at connected point to the beam is considered as ),( tay& and at connected end to the 
mass is u&  and it is assumed change linearly as shown in Fig.3. An element with the length of 
λd  at a distance of λ  from the top of spring is considered. From Fig.3 the velocity of this 

element can be written )/))(,((),()( LtayutayV λλ &&& −+=  in which ∑= )()(),( tqatay ii && φ and 
L  is the free length of the spring and Lm ss ρ= denotes spring mass and sρ is the mass per 
length of the spring. So potential and kinetic energy for the system are written as: 
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Figure 3. Variation of the absorber spring velocity 

 
Generalized force is tbFQ ii ωφ sin)(0= . Substituting Eqs.11 and 12 into the Lagrange’s 
equation [16], the vibration equations of the whole system are expressed by: 
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In which the expressions specified with a dashed lined are added relative to Eqs.5 and 7 and: 
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iq and u  are found by solving Eq.13. Using Eq.1, the deflection of beam will be achieved. It 
can be shown that for beams with high natural frequencies, the values of 3,2,1, =iiα  are so 
small that the natural frequencies of absorbed beam are remained almost constant. Similarly, 
for the system with an absorber made of mass, spring and damper, Eq.13 is changed to: 
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4. RESULTS AND DISCUSSIONS 

 
A beam with simple supports is considered. Cross section of the beam is shown in Fig.4 and 
specifications of the beam and absorber are listed in Table.1. It should be noted that these 
values are selected only for start of analysis. During the procedure of the analysis of the 
problem, each of these parameters can be varied such that the optimum values of them are 
determined. All results presented in this paper are for the case of absorber with no damper. 
Values of five natural frequencies of the beam with/without absorber are shown in Table.2.  
 

Table 1.  Specification of the vibration system 

Beam 
material steel beam mass kg

M 1800=  Absorber 
mass 

kgm 30=  Excitation 
amplitude  

NF 50000 =  

Young’ 
modulus 

GpaE 150= Beam 
length  mL 30=  Spring 

stiffness mN
k

/
2000=  Excitation 

position  mb 10=  

Density 3

'

/
7800

mkg
=ρ  Number of 

modes  5mod =e  Damping  
msN

c
/.
50=  Excitation 

frequency  srad /
20=ω  

Mass per 
unit length 

of beam mkg /
60=ρ  Number of 

elements  50=Nu  

Distance 
between 

spring and 
damping  

cmd 5=  Kind of 
support  simple- simple



 Table 2. Natural frequencies of the beam 
 

Natural frequencies of the 
beam without absorber nω  

Natural frequencies of the 
beam with absorber nnω  

71.3  81.3  
84.14  95.14  
40.33  62.33  
37.59  58.59  
77.92  94.92   

       Figure 4. Cross sectional area of the beam 
 

 
4.1 Finding the Best Position of the Absorber at a Given Spring Stiffness  
 
To find the best position of the absorber, the beam is diffracted to a finite number of 
elements. Then, absorber moves along the beam and placed at the end of each element and 
deflection of midpoint of the beam is computed. Finally between all values, the minimum 
value of deflection and its corresponding position of absorber are determined. Considering 
other parameters constant, spring stiffness of the absorber is varied theoretically between 

mN /500 .to mKN /100 . The best position of the absorber for different values of spring 
stiffness is found. This procedure is repeated in various excitation frequencies and various 
positions of excitation, e.g., Figs.5 and 6 show the best position of the absorber versus the 
spring stiffness in log-scale at an arbitrary frequency and a natural frequency.  
 

 
      Figure 5.The best absorber position,         Figure 6. The best absorber position     

         )/(8.31 sradn =ω ,     mb 10=            )/(20 srad=ω  mb 10=  
   
4.2 Effect of the Absorber on the Deflection of the Beam and its Optimum Design 
 
At the beginning of the analysis the mass and spring stiffness of the absorber are selected as 

kgm 30= , mKNk /20=  respectively (these are not optimum values). Now, the excitation 
frequency is varied in range srad /1001 << ω  which contains the first five natural frequencies 
of the beam. Using a program written in MATLAB, in each frequency, the best position of the 
absorber is found such that the deflection of midpoint of the beam is minimized. The deflection 
curves of the beam against the excitation frequency without/with absorber are shown in Fig.7, 
where resonance occurs at the first and the fifth natural frequencies of beam. Theoretical values 
of deflection at the midpoint at these frequencies are mymy 12.0,1.2 31 ==  that after using 
absorber are reduced to mymy 11.0,025.0 31 =′=′ . But the used absorber is not the optimum 
one. To design an optimum absorber, the mass of absorber is assumed to be constant 
( kgm 30= ). Considering other parameters constant, three regions are considered for spring. 
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Figure 7. Deflection curves of the beam at different excitation frequencies without/with absorber 

(Left/Right respectively) 
 

In each region, best values of both the spring stiffness and its position are found such that the 
deflection of midpoint is minimized. For the beam with specifications given in Table.1 and 
with the excitation frequency of srad /20=ω , the best value of stiffness is found at 

mNk /7600= . For other frequencies, the optimum absorber is determined similarly, e.g., at 
the first natural frequency of the beam, Table 3 is achieved. The best value of stiffness is 

mNk /9800= . In two arbitrary values of frequency, a frequency except the natural frequency 
and the natural frequency, the optimum values of absorber parameters are presented in Table 4. 
Deflection curves of beam without/with absorber are shown in Fig.8, in which the excitation 
frequency is srad /81.3=ω . The values of midpoint deflection without/with absorber are 

my 445.60 = , my 0228.0= , respectively. The deflection of midpoint is reduced about 280  times.  
 

Table 3. The best values of k and the best position of the absorber for sradn /8.31 =ω . 

)/( mKNk  Best value of k  Best position of absorber  Deflection of midpoint of beam 

15.0 << k  5.0  m8.16  m0475.0  
101 << k  8.9  m2.28  m0228.0  
10010 << k  68  m2.28  m0345.0  

 
Table 4. The optimum values of the absorber parameters  

 

 
Figure 8. Deflection curves of the beam without/with optimum absorber (left and right, respectively) 

 Mass absorber (constant) Optimum spring stiffness Best position of absorber

srad /20=ω  kgm 30=  mKNk /6.7=  mabest 6.24=  
srad /8.3=ω  kgm 30=  mKNk /8.9=  mabest 2.28=  



5. SIMULINK SIMULATION OF THE SYSTEM  
 
Finally, vibration system is simulated by SIMULINK  Toolbox of MATLAB. The important 
advantage of this simulation is that one can find the absorber optimum specifications by 
several tries and errors for a beam with arbitrary supports under any other types of excitation 
such as step, ramp and etc. Simulated block diagram of the problem is not shown in this 
paper. 

 
6. CONCLUSIONS 

 
In this paper the effect of a tuneable vibration absorber (TVA) on reducing vibration of an 
Euler-Bernoulli beam is studied. This beam is under a harmonic point excitation which can 
have a variable position. It is shown that the best position of the absorber to minimize 
midpoint deflection of beam depends on both frequency and position of exciting force. The 
optimum specifications such as spring stiffness, absorber mass and its position are determined 
simultaneously by developing and using several algorithms under MATLAB environment. 
The effect of absorber is observed clearly in the natural frequencies of system. Also, the effect 
of variation of the spring length which results the variation of both absorber mass and spring 
stiffness can be another interesting research in passive control of beam vibration. 
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