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Abstract 
 
In this paper, an efficient identification method of the material parameters is proposed using an 
optimization technique and applied to real materials to identify the fractional-derivative-model 
parameters of the material. In the proposed method, frequency response functions are measured from a 
cantilever beam impact test. The frequency response functions on the same points with the measured 
one are calculated by using an FE model with the equivalent stiffness approach. The differences 
between the measured and the calculated FRFs are minimized using a gradient-based optimization 
algorithm in order to identify the real values of the parameters. Four FRF’s of a damped beam structure 
are measured in an environmental chamber at different temperatures and used as reference responses. 
An impact hammer and a laser vibrometer are used to measure the reference responses. Both linear and 
nonlinear relationships between the logarithmically-scaled shift factors and temperatures are examined 
in identifying the material parameters. The experimental results show that the proposed method 
accurately identifies the fractional-derivative-model parameters even for real damping materials. 

1. INTRODUCTION 

Material parameters of a viscoelastic damping material are very important data both in 
describing the responses of a damped structure and in designing the damped structure [1]. In 
recent years the fractional derivative model has been used to describe the dynamic 
characteristics of a damping material with respect to frequency and temperature [2, 3]. 
However, only a few researchers have studied on a method of optimal identification of material 
parameters of viscoelastic materials. Lekszycki et al. treated the problem of optimal 
constitutive parameter identification of viscoelastic materials of the sandwich beam using the 
derivation of optimality condition and one-dimensional Voigt model [4].  Deng et al. proposed 
a system identification procedure based on the direct nonlinear optimization and a sub-optimal 
method to estimate the polyurethane foam modeled by a fractional derivative model [5]. 

In previous work [6], the authors proposed an efficient identification method of the 
material parameters using an optimization technique and showed its applicability through 
numerical examples. In this study, the proposed procedure is applied to real materials to 
identify the fractional-derivative-model parameters of the material. 
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2. IDENTIFICATION OF MATERIAL PROPERTIES 

2.1 Fractional Derivative Model of Viscoelastic Materials 

Dynamic characteristics of the viscoelastic materials in frequency domain can be represented 
using the complex modulus such as:  

 εηε )(EEσ * i+== 1  (1)�

where 1−=i , σ   and ε are the Fourier transforms of stress and strain, respectively. E,E*  
and η  are the complex modulus, the storage modulus and the loss factor, respectively. 

The complex modulus of viscoelastic materials is strongly dependent on temperature as 
well as frequency. However, one can predict the complex modulus at any temperatures using 
the shift factor (T)α  from the temperature-frequency superposition principle of viscoelastic 
materials. The shift factor is coupled with temperature through the linear Arrhenius equation or 
nonlinear William-Landel-Ferry (WLF) one such as [11]:  
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where 1d  and 1b  are material constants, and 0T  is a reference temperature in degrees absolute. 
Considering the frequency variation of damping behavior as well as temperature variation, 

the complex modulus of the fractional derivative model in frequency domain can be written as 
follows [11, 12]. 
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Here, the four parameters 110 c,a,a  and β  in equation (4) are identified by a suitable empirical 

way.  
It is well known that the four-parameter fractional derivative model is sufficient to 

represent the real behavior of viscoelastic materials over a wide frequency range [3]. Therefore, 
identifying the six or seven parameters of a viscoelastic material, the fractional derivative 
model can describe the dynamic characteristics of the viscoelastic materials over frequency and 
temperature variations. To estimate the fractional-derivative-model parameters of a real 
material with conventional methods, first many tests should be repeated until sufficient number 
of data are acquired at different frequencies and temperatures using, for example, Oberst beam 
test [8, 9] as shown in Fig. 1. Second, from these data, the coefficients of the fractional 
derivative model can be determined 
using a statistical data analysis 
technique that minimizes the mean 
square error between theoretical value 
and the tabulated value [11]. However, 
the statistical data analysis process is 
not so efficient because it includes 

 
Figure 1. Oberst beam test configuration. 



ICSV14 • 9-12 July 2007 • Cairns • Australia 

trial-and-error steps, i.e., the shift factor is assumed and the mean square error is minimized. 
The trial-and-error step is repeated in turn until the minimal global error value is obtained.  
 

2.2 A New Identification Method 

A new estimation method of the fractional-derivative-model parameters starts from an 
assumption that if a numerical model reproduces measured responses, then material properties 
used in the simulation model is the real material properties of the material. Then by minimizing 
the response difference between the measured and simulated FRF’s, one can identify the 
material properties using a numerical search algorithm. Therefore, the identification index 
function that is zero at the true values and should be minimized for the identification can be 
defined as follows. 
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Here, x , N and f  are frequency responses, number of responses and frequency, respectively.  

Generally, gradient-based mathematical programming techniques are used to minimize the 
identification index because the gradient-based methods are the most efficient although it may 
give a local minimum.  

The convex region of the identification index function should be as wide as possible in 
order that the identification procedure can give true values consistently regardless of initial 
values. The identification index defined in Eq. (5) sometimes may fall into a local minimum if 
initial values far from the true values are given. To widen the stable region of the identification 
process, the authors introduced a new identification index and divided the identification process 
into two steps. The first step is a peak-alignment step and the second one is an 
amplitude-adjustment step. As a 
result, the identification index 
defined in Eq. (5) is split into two as 
follows: 
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where λ  and M are resonance 
frequencies and the number of 
resonant peaks within a concerned 
frequency range, respectively. Then, 
minimizing the first identification 
index function with respect to the 
parameters of the factional 
derivative model, one can expect that 
the response differences will be very 
small. Therefore, the second step that 
is a minimization step of 
magnitude-difference between the 
measured and simulated FRF's, can 
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Figure 2. The two-step identification procedure. 
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be started from very close values to true values, which means that the identification process has 
little possibility of falling in a local minimum. Figure 2 summarizes the identification 
procedure. 

2.3 Finite Element Analysis of the Damped Beam 

For the identification process a simulation model of the damped beam is necessary. In addition, 
the gradient information of the identification index function with respect to the unknown 
parameters should be provided in order to search minimum points using a numerical search 
algorithm. 

To simulate the forced responses of the damped beam, the modal superposition method is 
used. The unconstrained beam is modeled by finite beam elements with the Ross, Kerwin and 
Ungar (RKU)’s equivalent complex flexural rigidity. The resulting eigenvalue problem 
becomes frequency-dependent one due to damping materials and the iteration procedure of Ref. 
[7] is used to solve the frequency-dependent real eigenvalue problem. The modal strain energy 
method is utilized to predict the loss factor of each mode. For more detail explanation of the 
analysis of unconstrained damped beam, one can see Ref. [7]. 

To identify the parameters of the fractional derivative model using a gradient-based 
algorithm, the sensitivity analysis for the identification indexes are needed. The parameter 
sensitivity information can be obtained analytically by differentiating the identification index 
expressions with respect to the fractional-derivative-model parameters. The resulting 
sensitivity equation consists of eigenvalue and eigenvector sensitivities and derivative 
expression of the complex modulus represented by the fractional derivative model. The details 
of the parameter sensitivity analysis method can be found in Ref. [7] and will not be repeated 
here because of lack of space.  

3. APPLICATION TO A REAL MATERIAL 

To verify the proposed identification method, a viscoelastic material is selected and its 
fractional-derivative-model parameters are identified experimentally. To obtain the reference 
responses of the identification method at several temperatures, impact tests in a 
constant-temperature chamber were fulfilled. Figure 3 shows the schematic diagram of the test 
set-up and the clamped beam structure. The beam-clamping structure was composed of a steel 
jig fixed on a test bed and an aluminum beam. The length, width and thickness of the beam were 
200.0, 20.0 and 4.0 mm, respectively. The aluminum beam was clamped by the two plates 

    
 

                         (a) Schematic diagram                                          (b) Clamped beam 

Figure 3. Experimental set-up 
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fastened by six steel bolts with a 
constant torque. A Polytec laser 
Doppler velocimetry (LDV) and 
Scadas III front-end were used to 
acquire response signals. Only one 
direction perpendicular to the beam 
was excited and measured in the 
experiment. The frequency band was 
3000 Hz with 1-Hz frequency 
resolution.  

The analytical finite element 
model was generated and validated 
using the bare beam. The bare beam 
was modeled by 40 linear finite beam 
elements. The calculated frequency 
response function of the bare beam was 
correlated with that of the measured 
one by slightly changing Young’s 
modulus and structural damping from the typical values of aluminum property. Figure 4 shows 
good agreement between the two results. 

A viscoelastic material, 3M-467 adhesive, was bonded on the beam with 1.2 mm 
thickness. Then, the fractional-derivative-model properties of the viscoelastic material were 
identified using the proposed method. The reference FRF’s were measured at four different 
circumferential temperatures such as 25, 35, 40 and 55 Co . To measure the FRF’s at a 
circumferential temperature, the temperature of the environment chamber was kept at the 
temperature at least 2 hours. The measured responses were averaged 7 times for each 
temperature. The damped beam was also modeled by 40 finite elements with the equivalent 
stiffness. Thereafter, the identification index function was defined and minimized in order to 
identify the material parameters. The lower and upper limits of frequency band were 30 and 
3000 Hz, respectively. To solve the minimization problem, the commercial program DOT Ver. 
5.4 [14] was employed with the analytical sensitivity information. 

In identifying the fractional-derivative-model parameter in the identification procedure, 
one can select the linear Arrhenius or the nonlinear WLF relationships to define a relationship 
between the shift factor and temperature. If one uses the linear relationship, it was shown in Ref. 
[6] that two reference FRF’s are sufficient to identify the parameters. However, a number of 
FRF’s over an interesting temperature range must be given for the WLF relationship. First, the 
parameters were identified with 
four reference FRF’s of 
different temperatures using the 
linear Arrhenius relationship. 
Comparing the calculated 
responses with the reference 
FRF’s in the identified results, 
the regenerated FRF’s at 25, 35 
and 40 Co  showed very good 
agreement with the reference 
FRF’s. However, the reference 
FRF and the calculated one at 
55 Co  showed large difference 
in the location of the fourth 

 
Figure 4. Calculated FRF compared with 

measured one for the bare beam 

Table 1. Identified material parameters for 3M-467 
with the WLF shift factor relationship 

 
Parameters Initial Value Identified 

0a  0.02 0.34065 

1a  0.02 0.49161 

1c  0.02 0.0010212 

1d  1.00 19.489 

1b  100. 376.81 

β  1.00 0.52618 

0T  10.0 23.527 
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resonant frequency, which means the 
linear relationship of the shift factor 
does not properly describe the 
temperature effects of the material 
around the temperature 55 Co . 
Therefore, the identification process 
was repeated once more with the same 
condition except adopting the 
nonlinear WLF relationship. Table 1 
shows the identified parameters of the 
fractional-derivative-model. Figure 5 
also shows the regenerated FRF’s with 
the identified parameters compared 
with the reference FRF’s at 25 and 
55 Co . As shown in Fig. 5, the 

nonlinear WLF relationship describes the temperature effect very well. One can determine the 
shift factor value for each temperature manually by minimizing the response difference 
between the reference FRF and the calculated one. These results are plotted with the identified 
Arrhenius and WLF relationships in Figure 6. One can see in Fig. 6 that the linear Arrhenius 
relationship starts to deviate from the real value above 40 Co . Actually, the 
fractional-derivative-model parameters identified with the WLF relationship are very close to 
the reference values of Ref. [11]; only 2.7% difference in storage modulus at the reduced 
frequency 1 Hz.  

4. CONCLUSIONS 

In the design stage of damped structures, the properties of damping materials such as storage 
modulus and loss factor are essential information. In addition, the fractional-derivative model is 
widely used to describe the dynamics characteristics of damping materials including 
temperature effects. In this paper, an efficient identification method of the 
fractional-derivative-model parameters is proposed using an optimization technique and 
applied to real materials. In the proposed method, frequency response functions are measured 

 

Figure 6. The shift factors compared with the 
linear and nonlinear relationships. 

 
 

                          (a) T=25 C°                                                    (b) T=55 C°  

Figure 5. Identified FRF’s compared with the reference FRF’s 
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from a cantilever beam impact test. The frequency response functions on the same points with 
the measured one are calculated by using an FE model with the equivalent stiffness approach. 
The differences between the measured and the calculated FRFs are minimized by using a 
gradient-based optimization algorithm in order to identify the real values of the parameters. For 
a real damping material, four FRF’s of a damped beam structure are measured in an 
environmental chamber at different temperatures and used as reference responses. A light 
impact hammer and a laser vibrometer are used to measure the reference responses. Both linear 
and nonlinear relationships between the logarithmically-scaled shift factors and temperatures 
are examined in identifying the material parameters. The experimental results show that the 
proposed method accurately identifies the fractional-derivative-model parameters even for real 
damping materials. 
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