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Abstract 

 
Minimum-Variance Control is one of the dominating strategies for actively suppressing 
acoustic noise. Feedforward structure is generally preferred if a reference signal is available. 
Otherwise, feedback structure is the interim solution. The purpose of this paper is to design an 
optimal combined control-weighted minimum variance noise control system. In the proposed 
approach feedforward is the primary control strategy. Feedback control is added to the already 
operating feedforward. It aims at controlling the residual noise of feedforward control. 
However, the main purpose of closing the external loop is to benefit from properties of 
feedback control. Appropriate controllers can be designed in the time domain, frequency 
domain or transform domain. The latter approach, based on polynomial operations, including 
Diophantine equations has been chosen. Correctly applied control weighting for both 
techniques guarantees stable operation for a non-minimum phase plant. Performance of the 
combined system is compared to performance of the individually operating feedforward 
system. Different time dependences are considered. Theoretical analysis is supported by 
simulation experiments based on data obtained from a real-world active headrest system. 

1. INTRODUCTION 

For active control, if a reference signal is measure-available, a fixed-parameter optimal 
control is preferred over corresponding feedback control. However, such statement is 
generally true provided the following assumptions are satisfied. 
a). Time delay introduced by the primary path, i.e. the acoustic path between the reference 
and the error sensor is smaller than the overall time delay introduced by the reference signal 
measurement path, control filter and the secondary path, i.e. the plant. 
b). Plant response and properties of the disturbance do not change significantly. 
c). The plant is linear. 

If assumption a) is not satisfied performance of the feedforward system may be poor 
since the control filter should work as a predictor. It can be then shown that under certain 
circumstances feedback system may perform better than feedforward system [1]. It is well 
known from control theory that violation of assumption b) or c) has usually also negative 
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influence on performance because the compensation action cannot be correctly undertaken. 
Feedback control has an in-built potential to suppress negative effects of plant/disturbance 
variations and plant non-linearity [2]. This is the primary premise for designing the combined 
system [3]. 

A secondary question is whether the combined system may perform better for the 
nominal plant and disturbance. In the presented approach it is assumed that optimum 
feedforward Minimum Variance (MV) control system is operating and then the optimum 
feedback external loop is provided. Therefore, although in fact a combined system is 
considered as presented in Figure 1, it can be substituted for analysis by the feedback system 
presented in Figure 2a, where the disturbance is the output of the feedforward system 
presented in Figure 2b. 
 

 

y(i) C2 

C3 W 

dp(i) + 
C1 

e(i) 

u1(i) k B
z

A

−  

H−  

u(i) 

u2(i) 

d(i) 

 x(i) + 
+ 

+ 

 
Figure 1. Combined control system. 
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Figure 2. Separately considered control systems (a – feedback, b – feedforward). 
 
 

The feedforward system is designed to minimize variance of the disturbance d at time 
instant i at the output of a plant modelled by an infinite impulse response (IIR) discrete time 
filter z-k

B/A. The plant itself is of acousto-electric nature and it is composed of a microphone, 
loudspeaker, appropriate amplifiers, anti-aliasing and reconstruction analogue filters, and A/D 
and D/A converters. All transfer functions in the figures are rational functions and the 
polynomials are of complex variable z. Informally, z

-1 should also be recognized as a one-
sample backward time-shift operator in difference equations. Since the measure-available 
reference signal x(i) driving the feedforward filter W should be correlated with the output 
disturbance d(i), both of them are assumed to originate from the same signal dp(i) being 
filtered by minimum phase finite impulse response (FIR) filters C3 (of r samples discrete time 
delay) representing the reference path and C2 (of s samples discrete time delay) standing for 
the primary path, respectively. The signal dp(i) is then assumed to be modelled as a wide-
sense stationary white noise, e(i), of respective variance, filtered by a minimum-phase filter 
C1. The following notation is also introduced: 
 

 
_ _ _ _ _ _ _
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It is assumed that polynomial 
_

C  is monic. The assumption concerning an FIR structure 
of the filter modelling the output disturbance differs from designs met in the literature, where 
an ARX or ARMAX model of the plant is usually used [2], [4], [5]. This assumption does not 
limit the considerations but simplifies analysis of the control system and makes some 
interpretations easier. 
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2.  FEEDFORWARD MV CONTROL SYSTEM 

It is well-known that if the control objective were to simply minimise the output signal 
variance the direct solution would result in an unstable system for a non-minimum phase plant 
[2], [4]. To avoid such problem the control filter can be designed to compensate for minimum 
phase part of the plant, [4], or inner-outer factorization and causal-anticausal decomposition 
of respective transfer functions can be performed [6], [7]. In this paper another approach is 
applied, which requires modification of the cost function by including control signal variance 
 

 { }2 2
1 1 1( ) ( ) ( )L i E y i qu i k= + − , (2) 

 
where q > 0 is a weighting coefficient [1], [4]. For feedforward control, the system output is 
expressed as follows (Figure 2b): 
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Using the notation defined in (1) the system output can be written as: 
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Let the following Diophantine equation be defined: 
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which simply splits polynomial C  into two polynomials. Substituting (5) for C
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Because dim
_

F kf = −1 the two terms in square brackets are independent. As a result the cost 

function, (2), for shifted samples takes the form: 
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The second term on the RHS of this equation is unknown at time instant i and cannot be 
controlled by 1( )u i . Thus, minimisation of the cost function is equivalent to minimisation of 
its first term, what can be done by: 
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After partially differentiating, the following relation is obtained: 
 

 1 0 12 ( ) ( ) 2 ( ) 0f
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, (9) 

 
where b0 is the first parameter of B. The optimal feedforward control law is expressed by: 
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where 0' /q q b= , what gives the optimal feedforward filter: 
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Combining (4) and (11) leads to an equation defining the stability condition: 
 

 AC B q Ar

_
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Taking (6) and (10) into account, the following relation is obtained: 
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Because the two random variables on the RHS of this equation are independent then the  
variance of the system output can be expressed as follows: 
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3. COMBINED CONTROL SYSTEM 

If a feedback is added to the feedforward system, the feedforward system output, (13), 
becomes the disturbance, df (i), to be reduced by the feedback, i.e., 1( ) ( )fd i y i=  (see 

Figure 2). Then, the combined system output is given by: 
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Let a Diophantine equation be defined to split polynomial Ff into two polynomials: 
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Combining (15) and (16), and shifting by k samples ahead, give: 
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Using the Diophantine equation defined for feedforward control, (5), the white noise signal 
can be extracted from (15) as: 
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Then, substituting for e(i) in (17), gives: 
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Separating variables and using (16) and (5) leads to 
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Let now an additional cost function be defined as follows: 
 

 { }2 2
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Repeating the same steps as for the feedforward system, i.e. partially differentiating the cost 
function with respect to 2 ( )u i  and making the result equal zero allows for finding the 
following optimal controller: 
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where 0' /fc fcq q b= . The characteristic equation takes the following form: 
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Equations (12) and (23) define conditions for stable operation of the combined system and 
justify presence of the control signal variance in the cost functions. The output signal under 
optimal combined control is: 
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Because the two random variables on the RHS of this equation are independent the variance 
of the combined system output can be expressed as follows: 
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4. COMPARISON OF THE CONTROL SYSTEMS 

The feedback loop operating over the feedforward system has been introduced to benefit from 
properties of feedback control in terms of response for modelling error and non-linearity, as 
explained in Introduction. Nevertheless, it is interesting to compare performance of the 
feedforward and combined control systems. This problem can be addressed fairly if nominal 
and varying conditions are considered separately. 

4.1 Nominal plant and disturbance 

To evaluate whether the feedback loop may enhance performance of the first implemented 
feedforward system for time-invariant plant and stationary disturbance the optimal 
feedforward output variance equation, (14), should be rewritten using the Diophantine 
equation defined for feedback, (16): 
 

 { }
2 2_ _22

1 ( ) ' ( ) ( ) ( )
'
f

fc fc

AG
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B q A

          
 + + = + + + +          +          

. (26) 

 
When compared to output variance obtained for the combined system, (25), it follows that the 
last term on the RHS is the same. Further analysis requires considering different time 
dependences. 

4.1.1 The case of k r s+ ≤   

According to (5) and (16) there are: Ff = 0, fG C= , Ffc = 0, Gfc = 0.  

Superiority of any of these systems depends on the plant and disturbance. However, as 
simulation experiments demonstrate the combined system usually results in a smaller output 
variance. If the plant were minimum phase then q’ and q’fc could be set zero. Consequently, 
output variances for both systems would be equal zero resulting in perfect disturbance 
cancellation. 

4.1.2 The case of k r s+ >  and r s≤  

According to (5) and (16) there are: 0fF ≠ , Ffc = 0, Gfc = Ff . 

Superiority of any of these systems depends on the plant and disturbance. However, as 
simulation experiments demonstrate the combined system usually results in a smaller output 
variance. If the plant were minimum phase then q’ and q’fc could be set zero. Hence, the first 
terms on the RHSs of (25) and (26) would nullify and the combined system would outperform 
the feedforward system. 



ICSV14 • 9-12 July 2007 • Cairns • Australia 

4.1.3 The case of  r > s 

Both Diophantine equations, (5) and (16), have non-trivial solutions. Superiority of any of 
these systems depends on the plant and disturbance. If the plant were minimum phase then q’ 
and q’fc could be set zero. Hence, the first terms on the RHSs of (25) and (26) would nullify 
and the combined system would outperform the feedforward system. 

4.2. Varying plant and non-stationary disturbance 

If the plant response or the disturbance spectral properties change, what is a usual case for 
active control, or modelling errors are significant, the forms of optimal feedforward control 
filter, (11), and feedback controller, (22), should be presented as follows: 
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where 
^^

,A B  are models of the denominator and numerator of the plant, 
^ ^

,rC C  are models of 

corresponding disturbance filters, and 
^ ^ ^ ^

, , ,f fcf fcF G F G  are solutions to Diophantine 
equations obtained for the models. Equations (12) - (25) and (23) - (26) are then not valid. 
Equations for the optimal system outputs and their variances should be found from control 
systems equations based on Figures 1 and 2. 

5. SIMULATION ANALYSIS 

To compare performance of the feedforward and combined controls systems designed in this 
paper simulation experiments were performed based on data obtained from a real-world active 
headrest system. Headrest of a chair was equipped with two secondary loudspeakers and two 
microphones in order to attenuate acoustic noise at the ears of a person occupying the chair 
[7]. Necessary electronics was also applied including A/D and D/A converters, analogue 
antialiasing and reconstruction filters (650 Hz cut-off frequency) as well as amplifiers. The 
sampling frequency was 2 kHz. For the purpose of the paper the secondary loudspeaker on the 
RHS only was running and the attenuation at the right error microphone was of interest, 
which for the nominal plant was at the distance of 15 cm to the user’s ear. The plant was non-
minimum phase including a 3-sample time delay. A grain mill noise was generated by 
a primary loudspeaker located in front of the headrest at the distance of 4 m. The reference 
signal was obtained from a reference microphone located in front of the headrest at the 
distance of 3.5 m Two types of experiments were performed. In the first experiment 
performance of the feedforward and combined control systems for the nominal plant was 
considered. In the second experiment the head was moved forward and to the left so the 
distance between the error microphone and the ear increased to 40 cm. For both experiments 
the noise was stationary. Results of the experiments are presented in Figures 3 and 4, 
respectively. 

Comparing the experiments the plant response changed dramatically resulting in 
significant change of polynomials A and B, although the time delay was the same. In turn, the 
primary and reference paths changed marginally. Therefore, the solutions to Diophantine 
equations can be considered the same. It follows from Figure 3 that for the nominal plant the 
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feedforward control system performs well yielding 15.3 dB attenuation and the combined 
system results in 16.4 dB attenuation. Because, due to the distance between the microphones, 
that was the control case discussed in section 4.1.1, the little improvement in the combined 
system is observed. Superiority of the combined system is clearly evident for the second 
experiment where there was large plant modelling error and the feedforward system could not 
correctly compensate for the disturbance. In that experiment attenuation levels obtained for 
the feedforward and combined systems are 6.1 dB and 12.7 dB, respectively. 
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Figure 3. Control results for the nominal plant. Figure 4. Control results for the changed plant. 

6. CONCLUSIONS 

It has been shown in this paper that a feedback loop may significantly support feedforward 
control system. Its contribution depends on plant response and disturbance properties and is 
clearly evident in case of plant modelling errors. Simulation experiments have confirmed 
theoretical considerations. The algorithms presented in this paper can be extend to control 
noise at the user’s ears by applying the idea of virtual microphones described, e.g. in [7]. 
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