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Abstract 
 
This paper deals with the active control of sound radiation from a rectangular plate with general 
boundary condition. A baffled rectangular plate with elastic boundary restraints is subjected to 
a steady-state harmonic point force, and the resulting radiated sound field is minimized by 
applying point forces as control input. Modal parameters are obtained by employing an 
improved Fourier series method (IFSM) to construct a set of admissible functions for the 
Rayleigh-Ritz procedure. In conjunction with this method, vibration response is derived 
utilizing modal superposition theory. Velocity mobility curves from such method with those of 
analytical solutions for simply supported boundary case are compared. The agreements are 
excellent. The optimized control force is then calculated for global attenuation based on this 
model. The effects of boundary conditions on active control are shown and discussed through 
computer simulations mainly performed for two special cases. 

1. INTRODUCTION 

In recent years, considerable research has been devoted to active control of sound radiation 
from plate structure by means of structural control, known as active structural acoustic control 
(ASAC). Majority of the published work has been confined to the plate structure with classical 
boundary conditions, i.e. simply supported or clamped supported boundary conditions [1-3]. 
However, in practice, the types of the edge conditions are not just limited to above two types, 
and little work has been done on studying how the boundary conditions will affect control 
performance.  

In this paper, active control of sound radiation from a baffled elastically restrained plate is 
considered. The modal analysis of the plate with homogeneous elastic supports along the edges 
is performed by using an improved Fourier series method (IFSM), recently proposed by Li [4], 
to construct a set of admissible functions in the Rayleigh-Ritz procedure. Modal superposition 
method is then employed to derive the plate vibration response to point force. Based on this 
plate model developed, two special types of edge spring stiffness variation are mainly taken as 
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examples to show the effect of boundary conditions on the control results of active control of 
sound radiation.  

2. VIBRATION RESPONSE OF ELASTICALLY RESTRAINED PLATE 

 
 
 
 
 
 
 
 
 
 
 

A vibrating elastically restrained rectangular plate located in an infinite baffle radiates 
sound into the upper semi-infinite space, as Fig. 1 illustrated. The surface velocity distribution 
as the input of sound radiation can be written in terms of the structural mobilityY such that 

 
                                                            Yfυ =                                                        (1) 

 
where f is the steady-state harmonic point force applied onto the structure surface in the normal 
direction. The structural mobility in the above equation can be written out according to modal 
superposition theory as  
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where ωn and ϕn are the natural angular frequency and mode shape distribution function of the 
nth structural mode, respectively; n is the mode order number, N is the total mode number 
considered in the modal superposition. ω is the angular frequency of excitation; (xf, yf) and (x, y) 
denote the locations of the point force application and response point on the surface of plate, 
respectively. ξ is the modal damping ratio; mn is the modal mass defined as  
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where ρ is the mass density of plate material, h is the plate thickness. 

Following Li’s work [5], the modal characteristic parameters of rectangular plate with 
general boundary conditions can be obtained by suing an improved Fourier series method to 
select a set of admissible functions in the Rayleigh-Ritz procedure. For a purely bending plate, 
the total potential energy can be derived as follows 

Figure 1. Elastically restrained plate model and co-ordinate system 
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       (4) 

 
where D, w, and ν are, respectively, flexural rigidity, flexural displacement of plate, and 
Poisson’s ratio of the panel. k is the translational edge spring constant, and K is the rotational 
edge spring constant, respectively. The subscripts with k and K indicate the location of the 
corresponding boundary springs. For example, kx0 presents the stiffness of the translational 
edge spring at x=0. Any types of classical boundary conditions can be easily obtained by setting 
the boundary spring stiffness into infinite or zero. 
The total kinetic energy is calculated from 

 

                                             
2
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An improved Fourier series method has been recently proposed for the vibration analysis 

of generally supported beams [4]. The flexural displacement of the beam is sought as the linear 
combination of Fourier series and an auxiliary polynomial function  
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Here, the function p(x) is introduced to take care of the potential discontinuities of the original 
displacement function and its derivatives at the end points.  

For plate problems, the products of the beam functions are often chosen as the admissible 
functions and the displacement function can be accordingly expressed as  
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Here, Amn are the unknown coefficients to be determined in the Rayleigh-Ritz procedure. 
Substituting Eq. (7) into Eqs. (4) and (5), and minimizing the Rayleigh quotient with respect to 
the undetermined coefficients 

                                                   max max( ) 0
mn

V T
A
∂

− =
∂

                                   (8) 

 
When all the series expansions are numerically truncated to m=M and n=N, the matrix equation 
below can be finally derived  
 
                                                               ( )2 0Dρ ω− =K M A                                       (9) 
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where ρD = ρh/D ; K and M are, respectively, stiffness matrix and mass matrix. ω is the 
frequency in radian. The detailed expression of the every term can be found in Ref [5]. The 
natural frequencies and eigenvectors can now be easily determined by solving a standard matrix 
eigenproblem. The mode shapes can be simply calculated using Eq. (7). 
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The counterparts in y-direction can be readily written out by simply replacing a and m in the 
above expressions with b and n, respectively. Making use of the equation  
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The normalizing factor can be determined by the following equation 
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Here, δ is the Kronecher delta function, and the expressions of X  and C are the same as those 
in Ref. [4]. 
The normalized mode shape coefficients in Eq. (10) can be written as 
 

/mn mnA A η=                                              (16) 
 
Submitting the normalized mode shape into Eq. (2), the structural mobility function can be 
rewritten as follows 

                                      2 2
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3. RADIATED SOUND POWER AND GLOBAL CONTROL  

The radiated sound power can be easily calculated by the velocity distributions with no 
need to explicitly calculate the far-field sound pressure. This formulation of sound radiated 
power can be expressed in terms of the contributions of the velocity of a number of individually 
radiating elements of the plate surface [6] 
                                                                     W Η= v Rv                                               (18) 
 
where R is the radiation resistance matrix. For the case in which the radiating surface is plane 
and in an infinite baffle, the terms of this radiation resistance matrix can be calculated 
analytically. And the superscript H denotes the Hermitian transpose. 

The cost function that the control system seeks to minimize will be the total radiated sound 
power. The total response of the plate vtot will be a superposition of two parts: the vibration due 
to the primary point force fp and the vibration due to the control point force fc.  

 
                                                  tot p p c cf f= +v Y Y                                          (19) 

 
Substituting the velocity into the equation for sound power radiation, equation (18), the radiated 
sound power, W, gives: 
 

            c c c c c c p p p p c c p p p pW f f f f f f f fΗ Η Η Η Η Η Η Η= + + +Y RY Y RY Y RY Y RY        (20) 
This equation is of standard Hermitian quadratic form. Since R is positive definite, the 

cost function of W has a unique minimum value. And the optimum control force that minimizes 
the total sound power is 

                                        1
, ( ) ( )c opt c c c P pf fΗ − Η= − Y RY Y RY                              (21) 

 
The resulting minimum achievable sound power output for the particular control source 
arrangement can be derived by substituting Eq. (21) into Eq. (20). 

4. NUMERICAL SIMULATION AND DISCUSSION 

The results of computer simulations for the active control of sound radiation from a 
rectangular plate with general boundary conditions will be presented. The rectangular plate 
parameters are given in Table 1. The damping ratio of ξ=0.002 was utilized for all mode cases. 
It was assumed that the plate was radiating into the air in this study. Firstly, to evaluate the 
prediction accuracy of the current plate model, two velocity mobility curves obtained from this 
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model are compared with those of analytical solutions under the simply supported boundary 
condition case. These two comparison curves are given in Figs. 2 and 3, the application location 
of the primary point force is (0.37, 0.1), and the response point location for calculation of 
transfer mobility is (0.2, 0.22). 

 
 

Table 1. Rectangular plate parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
The truncated numbers of terms M=N=6 are used in the calculation. It can be found that this 
model can predict the structural response with excellent accuracy.  
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Figure 2. Comparison of driving point mobility         Figure 3. Comparison of transfer point mobility 

 
Now, let us use this model to study the effect of boundary conditions on the active control 

of sound radiation by applying a secondary control point force, applied at location of (0.18, 0.12) 
on this plate surface. The complex amplitude of the primary point force is 1 N in the simulation. 
It is assumed that the four edges have the same uniform edge spring stiffness. The translational 
and rotational spring stiffness constants are denoted by using kt and Kr, respectively. For the 
sake of the simplification, two special cases are considered. One case is that a simply supported 
plate with uniform rotational spring stiffness along each edge. The other is that the translational 
edge spring stiffness varies while the rotational spring stiffness is infinitely large. Both the 
attenuation and sound power after control are compared to demonstrate the effect of the 
boundary conditions on active structural acoustic control. The reference value 10-12 W is used 
for the calculation of radiated sound power dB value.  

Parameter Value 

length, a (m) 0.42 
width, b (m) 0.28 

thickness, h (mm) 1.8 
Young’s modulus, E (GPa) 71 

density, ρ (kg/m3) 2720 
Poisson’s ratio, v 0.33 
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The first case we consider is a simply supported rectangular plate with elastic restraints 
against edge rotations. The effect results under different rotational spring stiffness are shown in 
Figs. 4 and 5. Active control is effective for each case shown in the two Figs above. At very low 
frequency, the purely simply supported case has the biggest attenuation of sound power. With 
the rotation restraint further increasing, the peaks of the active control attenuation are shifted 
toward higher frequency. The speed of the effect is rapid when rotational spring stiffness is 
relatively small. By comparing Fig. 4 with Fig. 5, it can be found that the variation trend of 
attenuation of sound power is not coincident with the final control results for the same control 
configuration. Case of Κr= ∞ is corresponded to the clamped supported boundary condition. It 
has the best control result at the low frequency. Increase of the rotational stiffness can improved 
low frequency control result aiming at the minimization of radiated sound power. 
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For the second case considered in this simulation, the translation spring stiffness varies 
from 10 to infinite, while setting Κr into infinite for each case. The simulation results are 
provided in Figs. 6 and 7. It can be found that this type of edge spring has opposite effect trend 
compared with that of the translation type. For the case in which the translation spring is very 
soft, the active control has little effectiveness on the sound radiation control except the 
extremely low fundamental frequency. When the value of kt varies in very small value range, 
the variation of control performance is not obvious. With the further increase of kt, the control 
performance is gradually improved in the low frequency range.  

Figure 5. Radiated sound power after  
control with variation of Kr 

Figure 4. Attenuation of radiated sound  
power with variation of Kr 

Figure 6. Attenuation of radiated sound  
power with variation of kt 

Figure 7. Radiated sound power after  
control with variation of kt 
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5. CONCLUSIONS  

An analytical model for predicting the active control performance of sound power radiated 
by an elastically restrained rectangular plate along the edges, by application of secondary point 
control force, has been developed. The accuracy of this model has been demonstrated by 
comparison of velocity mobility curves with the analytical results under the simply supported 
boundary condition. Both of agreements are excellent. This model is generally applicable to 
investigate the effect of elastic restraint along any edge on the active control of sound radiation 
from a rectangular plate.  

In the first case studied in this paper, the trend of attenuation is opposite with that of the 
control result at the low frequency, which suggests that the boundary condition play an 
important role for the active control. It should be seriously considered to design the active 
system aiming at the best control effectiveness. Interesting phenomenon has been found in the 
second case where the variation of the translation stiffness is considered with the rotational 
stiffness Κr= ∞ that the active control is not effective for the little translational stiffness case. 
With the increase of kt, control performance will be gradually improved during the low 
frequency range. These two cases here show different effect of boundary conditions on the 
active control. So as to achieve the best control performance, the boundary condition effect 
should be taken into consideration during the system design and further study will be carried 
out to discover this effect more in depth.  
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