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Abstract 
 

In this paper, a design method to modify the vibration characteristics of a structure by 
creating dents, or dimples on its surface is investigated. In particular, the vibration response of a 
beam with several dimples is formulated using the impedance method. The dimpled beam is 
divided into two kinds of structural segments: one, a curved beam that is modeled as the dimple 
and the other, a straight beam. The frequency equation is derived by assembling the impedance 
of each structure segment based on conditions of force equilibrium and velocity compatibility. 
Then a novel method for shifting the natural frequencies of a structure to pre-assigned values by 
creating dimples on the structure is introduced. The dimple size and its location on the structure 
can be determined analytically so the time consuming process using the traditional optimal 
search method is thereby avoided. Several examples using this technique are demonstrated. 

1. INTRODUCTION 

Moving the natural frequencies of a structure away from the frequency range of an 
excitation is often a basic requirement in a design process. The natural frequencies of a 
structure can be altered through changes of the structural geometry, boundary conditions and/or 
the addition of auxiliary structures, such as masses, ribs, etc. [1-3]. Most studies related to 
shifting the natural frequency away from the forcing frequency for a structure are based on 
optimization methods. Here, the cost function, e.g., a designated natural frequency, is 
minimized or maximized in an optimization algorithm. In this paper, the natural frequencies of 
a structure are changed to designated values by forming a series of dimples on it. The 
motivation for this is simply that forming dimples on a structure is a very cost-effective 
procedure during a manufacturing process. The dimple on a structure mainly influences its 
structural stiffness and hence its dynamic characteristics. The key issue that needs to be 
addressed is how to determine the required dimple size, number and location on the structure so 
the natural frequency can be shifted to the desired value. A methodology to do so based on the 
impedance technique is proposed in this paper.  

The impedance technique [3] provides a useful method in investigating the vibration of 
one portion of a mechanical system independently with respect to the rest of the system. The 
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mechanical receptance for each sub-structure is obtained first and then these receptances are 
integrated to determine the response of the structure after an assembly based on the conditions 
of force equilibrium and response compatibility. The idea of breaking up a complicated system 
into substructures with simple dynamic characteristics is well-known (see e.g., Bishop and 
Johnson [4]). The traditional transfer-matrix method presented by Pestel and Leckie adopted a 
similar methodology [5]. These methods are ideally suited to a system with a number of 
sub-structures linked together in the form of a chain. The impedance method specifically aims 
for solving the dynamical system from the point of view of “system”. The input-output relation 
for a dynamic system is explicitly expressed using the transfer function, called mobility. The 
advantage is simply that the mobility of a substructure or its inverse, the impedance can be 
obtained experimentally (e.g., impact testing) or numerically (e.g., finite element methods) 
when analytical models are not available due to either its irregular shape or complicated 
boundary conditions. In this paper, the dimpled structure is divided into two substructures: one 
is the dimple and the other is the straight beam. Each dimple is modeled as a curved beam and 
its impedance is obtained with the finite element model. The impedance of the straight beam is 
obtained analytically. An impedance coupling technique is used to assemble the substructures 
into the dimpled beam. Then a logical scheme is introduced to show how the dimple size and 
location can be chosen to shift the natural frequency of a beam. 

2. IMPEDANCE COUPLING 

Consider a beam with several dimples as shown in Fig. 1(a), where xi, φi and Ri are the 
position, angle and radius for the ith dimple, respectively. This dimpled beam is divided into 
curved and straight structural segments. Each segment is a structural subsystem and is 
represented by a block diagram as shown in Fig. 1(b). The link or coupling between two 
subsystems requires force equilibrium and velocity compatibility. For example, the vibration 
response of Subsystem 1 as sketched in Fig. 1(c) can be expressed as: 
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where 1bX& ={ 1bx& , 2bx& , 3bx& }T represents the velocity vector that consists of the longitudinal, 
transverse and angular velocities, respectively; Fb1={fb1, fb2, fb3}T is the force vector that 
includes horizontal and vertical forces and a moment. Similarly, 2bX& ={ 4bx& , 5bx& , 6bx& }T and 
Fb2={fb4, fb5, fb6}T represent the velocity and force vectors that connect with Subsystem 2. The 
transfer function is represented by the cross mobility, β12 and β21 and the driving point mobility, 
β11 and β22, respectively. For Subsystem 2 which is linked respectively with Subsystems 1 and 3, 
the vibration response is expressed as: 
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where 1cX& ={ 1cx& , 2cx& , 3cx& }T, 2cX& ={ 4cx& , 5cx& , 6cx& }T, and Fc1={fc1, fc2, fc3}T, Fc2={fc4, fc5, fc6}T. 
Based on the conditions required by the velocity compatibility and force equilibrium, 
Subsystem 1 with Subsystem 2 can be combined into a coupled Subsystem 1-2 as: 

( ) dd FαX 21−=& , (3a)
where dX& ={ 1x& , 2x& , 3x& , 7x& , 8x& , 9x& }T, Fd={f1, f2, f3, f7, f8, f9}T, and α(1-2) denotes the mobility 
of Subsystem 1-2. The input-output relation of Subsystem 1-2 can be rewritten as: 
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where 1dX& ={ 1x& , 2x& , 3x& }T, 2dX& ={ 7x& , 8x& , 9x& }T, Fd1={f1, f2, f3}T, Fd2={f7, f8,  f9}T, 
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β with α(1-2) and γ with the mobility δ of Subsystem 3, the mobility α(1-3) that combines three 
subsystems, i.e. Subsystem 1-3, is obtained: 
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where 1eX& ={ 1x& , 2x& , 3x& }T, 2eX& ={ 10x& , 11x& , 12x& }T, Fe1={f1, f2, f3}T, Fe2={f10, f11, f12}T, 
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procedure is repeated until the first M subsystems are combined into a single system and the 
mobility is simply denoted as α(1-M). Therefore for a system consisting of a number of M 
subsystems as shown in Fig. 1(b), the input-output relationship is simply denoted as: 

X& M=α(1-M) FM, (5)
where MX& ={ 1x& , 2x& , 3x& , )13( +Mx& , )23( +Mx& , )33( +Mx& }T, FM={f1, f2, f3, f(3M+1),  f(3M+2), f(3M+3)}T. 
The corresponding frequency equation is given by 

Δ=det(α(1-M)). (6)
It is obvious that the dimpled beam exhibits resonance if the determinant Δ approaches zero. 
From equations (3) and (4), the natural frequency of the dimpled beam depends on the mobility 
of each subsystem, which includes the dimple size, location, etc. which will be described in the 
following section. 

3. MOBILITY OF SUBSYSTEM 

The dimpled beam consists of straight and curved beam segments, and the mobility 
corresponding to each segment is derived in this section. 

3.1 Mobility of Straight Beam 

For a straight beam with free-free ends as shown in Fig. , six coordinates, a longitudinal, a 
transverse and an angular velocities for each end, are required to describe the link with the other 
structural subsystems. The mobility which represents the relation between the vibration 
response and the external excitation can be expressed as: 

X& (B1)=α(B1)F(B1), (7)
where X& (B1)={ 1Bx& , 2Bx& , 3Bx& , 4Bx& , 5Bx& , 6Bx& }T, F(B1)={fB1, fB2, fB3, fB4, fB5, fB6}T and the 
structural mobility α(B1) is given by [4]: 
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where ω the force frequency, Eb the Young’s modulus, Ib the moment of inertia, Lb the length of 
straight beam, ρb the density, Ab is the cross-sectional area of beam and C1=sin(μ2Lb)sinh(μ2Lb), 
C2=cos(μ2Lb)cosh(μ2Lb), C3=cos(μ2Lb)cosh(μ2Lb)-1, C5=cos(μ2Lb)sinh(μ2Lb)-sin(μ2Lb) 
cosh(μ2Lb), C6=cos(μ2Lb)sinh(μ2Lb)+sin(μ2Lb)cosh(μ2Lb), C7=sin(μ2Lb)+sinh(μ2Lb), C8= 
sin(μ2Lb)-sinh(μ2Lb), C10=cos(μ2Lb)-cosh(μ2Lb), μ1

2=(ω2ρb)/Eb, )/()( 24
2 bbbb IEAρωμ = . 

 3.2 Mobility of Dimple 

The dimple on a beam is modeled as a curved beam with a dimple angle φ and a radius R as 
illustrated in Fig. 3. The equation of motion for this curved beam is derived using the finite 
element method[6]. And the nodal velocity response can be expressed as: 

HFu =g& , (9)
where gu&  is the nodal velocity, F is the harmonic nodal force and H=(K-ω2M)-1/(jω) is the 
mobility. For a curved beam with free-free ends and the external force only acting on its ends, 
Eq. (9) is simplified as: 

( ) ( )1
22)1(21)1(

12)1(11)1(
1 D

DD

DD
D Fαα

αα
X ⎥

⎦

⎤
⎢
⎣

⎡
=& , (10)

where X& (D1)={ 1Dx& , 2Dx& , 3Dx& , 4Dx& , 5Dx& , 6Dx& }T represents the velocity of both ends , F(D1)= 
{fD1, fD2, fD3, fD4, fD5, fD6}T is the vector that stands for the external force acting on the both ends, 
and α(D1) is the mobility.  

    5. INFLUENCES OF DIMPLES ON NATURAL FREQUENCY OF BEAM 

Consider a simply-supported beam with a Young’s modulus E=1.89×1011 Pa, density 
ρ=7688kg/m3, width b=0.025m, thickness h=0.001m and a length L=0.3m. A single dimple is 
created on it but the total mass of this beam is the same before and after the beam is dimpled, i.e. 
the dimple is thinner than the other parts of the beam. While the dimple does not change the 
mass of the beam,  it does affect the stiffness of the beam. Thus the natural frequency of the 
beam can be altered by varying the dimple size and dimple location. For a beam with a single 
dimple whose chord is a tenth of the beam length as illustrated in Fig. 5, Figure 6 shows the 
change of the first natural frequency in percentage by varying the dimple angle, position and 
radius. In Fig. 6(a) the dimple angle varies from 0 to 180 degrees, whereas the location of this 
single dimple is changed from one end of the beam to the middle, i.e. from x/L=0 to x/L=0.5. As 
compared to a beam without a dimple, the natural frequency change in percentage is 
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represented using gray spectrum. It is not surprising that the single dimple has its maximal 
influence on the first natural frequency when it is located on the middle of the beam. 
Furthermore, the first natural frequency is highly sensitive to the change of the dimple angle as 
compared to that of the dimple location if the dimple is near the anti-node of the beam. For a 
single dimple located on the middle of the beam, x/L=0.5, Figure 6(b) shows the influences of 
the dimple size, R/L and the dimple angle on the first natural frequency of the beam. It is 
obvious that one may use a small dimple but with a large dimple angle to have the same 
influence on the natural frequency of the beam as a large dimple but with a smaller dimple angle. 
The dimple size has little effect in changing the natural frequency when the dimple angle is 
small. Figures 6(a) and 6(b), show in general that the first natural frequency for a beam with a 
dimple is smaller than that of the beam without a dimple. The reason is simply that the dimple is 
thinner than the other parts of the beam; therefore, its bending stiffness is smaller than the 
beam. 

6. NATURAL FREQUENCY TUNING OF A BEAM WITH THE ADDITION OF 
DIMPLES 

When considering the dependency of the natural frequency of a dimpled beam  on the 
number, angle and location of the dimples, it is evident from figures 6(a) and 6(b) that the 
dimple angle that has the major influence in altering the natural frequency. For a beam with a 
number of K dimples, the frequency equation is expressed as: 

Δ=f(φ1, φ2, …, φK, ωf), (11)
where φK is the angle of the Kth dimple, ωf is the excitation frequency of external loads (note that 
the radius of each dimple is the same for simplicity). If one needs to adjust multiple natural 
frequencies of a beam simultaneously by adding K dimples, equation (11) is modified as: 

Δ1(φ1, φ2, …, φK, ω1)=0, Δ2(φ1, φ2, …, φK, ω2)=0, …, ΔN(φ1, φ2, …, φK, ωN)=0, (12)
where N is the total number of natural frequencies to be tuned. The solution of equation (12) 
yields the angle of each dimple required to shift N natural frequencies simultaneously to the 
designated values. If only one natural frequency is chosen to be changed to a designated value, 
e.g., the mth natural frequency ωm, the dimple angle is determined using one of the equations in 
Eq. (12), e.g., Δm(φ1, φ2, …, φK, ωm)=0. The dimple angle is obviously different if the dimple is 
added at different locations on the beam. When one needs to simultaneously shift N natural 
frequencies simultaneously to the designated values, the dimple angle for each dimple, φ1, φ2, 
…, φK is determined uniquely for K=N. This implies that simultaneously shifting the natural 
frequencies to the number of N requires at least a number of N dimples;  however, there would 
be infinite solutions if K>N. 

To illustrate the applications of adding dimples on a beam in order to tune its dynamic 
characteristic, three examples are presented in this section. The first example demonstrates how 
to use a single dimple to adjust the first natural frequency of a beam to a designated value. The 
second example shows how to use three dimples of the same size to change the 3rd natural 
frequency to a designated value while the  third example involves simultaneously shifting two 
natural frequencies to designated values using two dimples. The beam demonstrated in these 
examples is simply-supported at both ends and has a Young’s modulus E=1.89×1011Pa, density 
ρ=7688kg/m3, width b=0.025m, thickness h=0.001m and length L=0.3m.  
Example 1: Use a single dimple to reduce the fundamental natural frequency of a simply 

supported beam from ω1 to 0.85ω1, i.e. 15% reduction, where ω1 is the 
fundamental natural frequency of the beam without the dimple.  

Assume that the beam is divided into eleven segments of equal length and each segment is 
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a candidate to be dimpled to shift the first natural frequency from ω1 to 0.85ω1. Notice that the 
total mass of the beam is the same before and after a single segment is dimpled as stated 
previously. According to the methodology of natural frequency synthesis introduced in the 
previous section, the angle for each dimple can be determined as: 

Δ(φ1, 0.85ω1)=0. (13)
Table 1 lists the dimple angle for each segment calculated using the proposed 

methodology. It shows that one may use a single dimple at Segment 6 with a dimple angle 
of 145°, or a dimple at Segment 8 of 159° to accomplish the task. It also shows that when 
forming a single dimple at segments 1, 2, 10 or 11, is impossible to change the natural 
frequency to the designated value. Moreover, the dimple angle becomes smaller as the 
dimple is located near the middle of beam. It simply reveals that the dimple at the 
anti-node of a mode could efficiently influence the corresponding natural frequency. On 
the other hand, the natural frequency is not sensitive to the dimple if it is located near the 
node of the corresponding mode, e.g., the segments 1, 2, 10 and 11 in this example. 
Example 2: Use three dimples of the same size to reduce 3rd natural frequency from ω3 to 

0.9ω3, where ω3 is the 3rd natural frequency of the beam without dimples. 
This example demonstrates how to change the natural frequency to a designated value by 

forming multiple dimples on a beam. Assume three dimples are placed at respective segments 
of the simply supported beam as sketched in Fig. 7 and the frequency equation required to shift 
the 3rd natural frequency ω3 to 0.9ω3 is 

Δ(φ1, φ2, φ3, 0.9ω3)=0, where φ1=φ2=φ3. (14)
The dimple angle that satisfies Eq. (14) is listed in Table 2. It shows that the dimples 

located respectively at segments 2, 6 and 10 have the smallest dimple angles, 86o due to their 
greater sensitivities with respective to the third natural frequency. Alternatively, one may use 
one or two dimples to accomplish the same task. As listed in Table 3, one may use one dimple at 
Segment 6 with a dimple angle of 124o; or two dimples at segments 6 and 10 with the same 
dimple angle of 101o. In this specific example, the more dimples are used in tuning the natural 
frequency to a designated value, the smaller angle for each dimple required to satisfy Eq. (14). 
Example 3: Use two dimples to shift the 1st and the 2nd natural frequencies from ω1 to 

0.9ω1 and from ω2 to 0.9ω2 simultaneously. 
Fig. 8 illustrates a simply supported beam with two dimples located at segments 4 and 

8, respectively. In order to shift two natural frequencies at the same time, the frequency 
equations become: 

Δ(φ1, φ2, 0.9ω1)=0, Δ(φ1, φ2, 0.9ω2)=0. (15)
From Eq. (15), it shows that the frequency equation consists of two dimple angles φ1 and φ2 as 
the function variables. Eq. (15) are represented respectively by surfaces as illustrated in Fig. 9. 
The intersections between the two surfaces are the required dimple angle to simultaneously 
shift the 1st and the 2nd natural frequencies from ω1 to 0.9ω1 and from ω2 to 0.9ω2. In this 
specific example the angle for this intersection is 46° at Segment 4 and 137° at Segment 8, 
respectively. 

7. CONCLUSIONS 

The efficacy of proposed design method to modify the vibration characteristics of a 
structure by adding dimples was demonstrated. A beam was divided into two kinds of structural 
segments: one is a collection of curved beams (dimples) and the other is straight beams. The 
frequency equation was derived by assembling the impedance of each structure segment 
according to conditions of force equilibrium and displacement compatibility. The calculated 
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natural frequency was validated by comparing it with that obtained using the traditional finite 
element method. Based on this impedance coupling methodology, a novel method for shifting 
the natural frequencies of a structure to pre-assigned values by adding dimples on the structure 
was introduced. The advantage of this approach is that the dimple size and its location on the 
structure can be determined analytically thereby circumventing the optimal search process 
which is highly time-consuming when the design sensitivity is unknown. 
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Table 1. Dimple angle for shifting the fundamental natural frequency from ω1 to 0.85ω1 

Segment No. 1 2 3 4 5 6 
Dimple angle( ° ) NA NA 176 158 148 145 

Segment No. 7 8 9 10 11  
Dimple angle( ° ) 149 159 177 NA NA  

Table 2. Dimple angle for shifting the 3rd natural frequency from ω3 to 0.9ω3 

Segment No. 1, 4, 8 2, 8, 11 2, 6, 8 2, 6, 10 6 6, 10 
Dimple angle( ° ) 123 104 97 86 124 101 

 

 
Figure 1. Schematic diagrams of dimpled beam                Figure 2. Impedance model of beam 

             
Figure 3. Impedance model of curved beam          Figure 5. Schematic representation of dimpled beam 
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Figure 6. Changes of the first natural frequency by varying the dimple location and the dimple  
size; (a) influence of dimple location and (b) influence of dimple size  

 
Figure 7. Schematic representation of simply            Figure 8. Schematic representation of simply 

supported beam with three dimples                           supported beam with two dimples 

 
Figure 9. Surfaces of Δ(φ1, φ2, 0.9ω1) and Δ(φ1, φ2, 0.9ω2) 
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