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Abstract 
An analytical method is developed to present the forced responses of a cracked 
simply-supported beam subjected to a traveling vehicle. The cracked beam system is modeled 
as a two-span beam and each span of the continuous beam is assumed to obey the 
Euler-Bernoulli beam theory. The crack is modeled as a rotational spring with sectional 
flexibility and a traveling vehicle is modeled as two concentrated moving loads separated by 
the distance of the vehicle wheelbase. Using the analytical transfer matrix method by 
considering the compatibility requirements on the crack, eigensolutions of this cracked system 
can be obtained explicitly. The forced responses can then be determined by modal expansion 
theory. 

1. INTRODUCTION 

The dynamic behaviour of cracked structures has been studied by several analytical and 
numerical methods [1-9]. Many works in this field deal with cracked beams subjected 
to various boundary conditions. Narkis [1] has studied the inverse problem of a simply 
supported beam. Shen and Taylor [3] have also studied the inverse problem by 
structural optimization methods. Ostachowicz and Krawzuk [4] have analyzed the 
effect of two cracks on the fundamental frequency of a cantilever beam. Rizos et al. [5] 
have used a rotational spring to model the crack and detect the crack location through 
the measurement of the amplitudes of the component. Dimarogonas [8] presented a 
review of the dynamics of cracked structures. A complete cracked-beam vibration 
theory was also developed by Chondros and Dimarogonas [9] for the transverse 
vibration of a cracked Euler-Bernoulli beam with single-edge or double-edge open 
cracks. In this study, the cracked region as a local flexibility is expressed by a 
crack-disturbance function ),( zxf which can be derived from the stress intensity 
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factors in the theory of fracture mechanics. An inverse problem involves the 
determination of the crack location and extent from the measured information of the 
cracked beam system. Liang et al. [10] have studied a similar problem by finite element 
methods.  

The effect of moving load on structures and machines is an important problem in 
the engineering field, for example, in the design of bridges or in the design of 
machining processes. A moving load will produce larger deflections and higher 
stresses than equivalent static load conditions. A lot of studies had also been done 
[12-14] on this field. However, not so many studies were reported in the previous 
literature on the effect of cracks on the moving load problems. Mahmoud [13] used an 
equivalent static load approach to determine the stress intensity factors for a crack in a 
beam subjected to a moving load. Mahmoud and Zaid [14] used an iterative modal 
analysis approach to find the response of a cracked simply supported beam with a crack. 
Most of the previous studies on this field have analyzed the problem numerically or 
hybrid numerically. The investigation in this study presents an analytical method that 
permits computation of the forced responses of a cracked simply-supported beam 
subjected to a traveling vehicle. The method is based on modelling the cracked beam as 
a two-span beam and each span of the continuous beam is assumed to obey the 
Euler-Bernoulli beam theory. The crack is modelled as a massless rotational spring 
with sectional flexibility and a travelling vehicle is modelled as two concentrated 
moving loads separated by the distance of the vehicle wheelbase. Considering the 
compatibility requirements on the crack, the relationships between these two spans can 
be obtained. By using the analytical transfer matrix method, eigensolutions of this 
cracked system are obtained explicitly. The forced responses can then be determined 
by modal expansion theory. 

2. THEORETICAL MODEL 

A simply-supported beam of length L  with one open crack at intermediate position 
1X  and a traveling vehicle with constant speed V is shown in Fig. 1a where 0X  and 

2X represent end points. The vehicle can be modeled as two concentrated moving 
loads 1P  and 2P  which are from the normal forces of the front and rear axles 
respectively. The vehicle has a wheelbase D and weight W with center of gravity (C.G) 
located at a distance a  from the front axle as shown in Fig. 1b.  

One major assumption in the analysis of this article is that the crack remains always 
open during the motions of the beam. The vibration amplitude of the transverse 
displacement is denoted by ),( TXY . By using the Euler-Bernoulli beam theory [1, 8, 
12], the equation of motion of the system, assumed to have a uniform cross section, is 
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where E is Young’s modulus of the material, I is the moment of inertia of the beam’s 
cross-section, ρ  is the density of material, A is the cross-sectional area of the beam, 
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)( VTX −δ  and ))(( DVTX −−δ denote the Dirac delta distributions, V is the constant 
speed of the travelling vehicle, T is time and 21 , PP  are normal forces from the front 
and rear axles of the vehicle and which can be expressed as: 

    
D

aDWP −
=  1 ,      

D
aWP   2 = , 

where a is the distance of vehicle C.G from vehicle front axle, D is the vehicle 
wheelbase and W is the vehicle weight. The boundary conditions of the beam for a 
simply-supported case are 
 
             ),0( TY  = ),0( TY ′′  = 0,                                                                              (2a) 

     ),( TLY  = ),( TLY ′′  = 0,                                                                             (2b) 

where )  ( ′  denotes the derivative with respect to the space coordinate X. The crack is 
modeled as a rotational spring with sectional flexibility. 
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Fig. 1a: A simply-supported beam with an open crack        Fig. 1b: Parameters of the traveling  
 of depth pD  located at position 1X  and a traveling                      vehicle: center of gravity C.G,  
vehicle with constant speed V; sub-domains 1L  and                    weight W and wheelbase D. 

2L  where LLL =+ 21 . 
 

The “compatibility requirements” enforce continuities of the displacement, bending 
moment and shear force, respectively, across the crack and can be expressed as [6, 7] 

),( 1)1( TXY −  = ),( 1)2( TXY + ,                                                                         (3a) 

),( 1)1( TXY −′′  = ),( 1)2( TXY +′′ ,                                                                       (3b) 

),(  1)1( TXY −′′′  = ),(  1)2( TXY +′′′ ,                                                                     (3c) 

where the symbols +
1X  and −

1X  denote the locations immediately above and below the 
crack position 1X  and the sub-index in the parenthesis represents the segments 
(sub-beams) of the system. Moreover, a discontinuity in the slope of the beam across 
the crack exists and can be expressed as [1, 6]  
              ),( 1)2( TXY +′ – ),( 1)1( TXY −′  = θ L ),( 1)2( TXY +′′ ,                                             (3d) 

where θ  is the non-dimensional crack sectional flexibility, which is the function of the 
crack extent. [4, 6] 

In the above equations, the following quantities are introduced: 



                                                                       ICSV14• 9-12 July 2007•Caims•Australia 

 4
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i = , 

L
Tt = , 

L
Vv = .   (4a~4h) 

Thus, Eqs. (1) can then be expressed in a non-dimensional form as 
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txy
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∂  = ))(()( 21 dvtxPvtxP −−+− δδ .                     (5) 

The non-dimensional “compatibility requirements” from Eqs. (3a) to (3d) are 

),( 1)1( txy −  = ),( 1)2( txy + ,                                                                         (6a) 

),( 1)1( txy −′′  = ),( 1)2( txy +′′ ,                                                                      (6b) 

),( 1)1( txy −′′′  = ),( 1)2( txy +′′′ ,                                                                        (6c) 

),( 1)2( txy +′ – ),( 1)1( txy −′  = θ ),( 1)2( txy +′′ .                                                 (6d) 
 

3. METHOD TO FIND EIGENSOLUTIONS 

Using the separable solutions: ),()( txy i = )()( xw i
te ωj  in Eqs. (5) leads to an 

associated eigenvalue problem, 

0)()(  )(
4

)( =−′′′′ xwxw ii λ ,          ii xxx <<−1 , 2,1=i                                (7a) 

where  
EI

LA 32
4 ωρλ = .                                                                                           (7b) 

From Eqs. (6a) to (6d), the corresponding compatibility requirements across the 
crack lead to 

                )( 1)1(
−xw  = )( 1)2(

+xw ,                                                                         (8a) 

                 )( 1)1(
−′′ xw  = )( 1)2(

+′′ xw ,                                                                        (8b) 

                )( 1)1(
−′′′ xw  = )( 1)2(

+′′′ xw ,                                                                         (8c) 

                )( 1)2(
+′ xw – )( 1)1(

−′ xw  = θ )( 1)2(
+′′ xw .                                                    (8d) 

A closed-form solution to this eigenvalue problem can be obtained by employing 
transfer matrix methods [15]. The general solution of Eqs. (7a), for each segment, is 

)(cosh)(sinh)(cos)(sin)( 1111)( −−−− −+−+−+−= iiiiiiiii xxDxxCxxBxxAxw λλλλ                                                   

ii xxx <<−1 ,          2,1=i                              (9) 

where iA , iB , iC  and iD  are constants associated with the i-th segment ( 2,1=i ). 

These constants in the second segment ( 2A , 2B , 2C  and 2D ) are related to those in the 
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first segment ( 1A , 1B , 1C  and 1D ) through the compatibility requirements in Eqs. (8a) 
to (8d) and can be expressed as [6, 7] 
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where 44×T  is a 44×  transfer matrix which depends on eigenvalue λ  and the 
elements of which are derived in [6] and rewritten here: 

11t =  1cos lλ – (1/2)θ λ 1sin lλ ,              12t = – 1sin lλ –(1/2)θ λ 1cos lλ ,                                      

13t = (1/2)θ λ 1sinh lλ ,                              14t = (1/2)θ λ 1cosh lλ ,                                                  

21t = 1sin lλ ,                                              22t = 1cos lλ ,                                                           

23t = 0,                                                       24t = 0,                                                                

31t = –(1/2) θ λ 1sin lλ ,                         32t = –(1/2) θ λ 1cos lλ ,                                               

33t = 1cosh lλ  + (1/2) θ λ 1sinh lλ ,         34t = 1sinh lλ  + (1/2) θ λ 1cosh lλ ,                                      

41t = 0,                                                      42t = 0,                                                               

43t = 1sinh lλ ,                                           44t = 1cosh lλ .                                                        
After applying the boundary conditions, the following equation can be obtained as: 
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Thus, the existence of non-trivial solutions requires 

det  
)(    )(  
  )(    )(  

2321

1311

λλ
λλ

rr
rr

= 0.                                                                            (12) 

This determinant provides the single (characteristic) equation for the solution of the 
eigenvalues nλ . This is a matrix of only 22×  dimensions: therefore, it is possible to 
obtain the corresponding characteristic equation explicitly. After the expansion of Eq. 
(12), the following symbolic characteristic equation can be obtained explicitly: 

nn λλ sinh sin 4  + nθλ  )coshsinsinh(cos nnnn λλλλ +   

– nθλ  ))]21(cosh(sinsinh))21([cos( 11 ll nnnn −+− λλλλ  = 0.         (13) 
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where nλ  is the eigenvalue of the system, )  ( 1
1 L

Ll ≡  is the non-dimensional crack 

length of the first span and θ  is the non-dimensional crack sectional flexibility which 
can be obtained described above for double and single-sided open cracks, respectively. 
The coefficients of the eigenfunctions, )(xwn , are obtained by back substitution into 
Eqs. (11a), (10) and then Eq.(9). 

 

4. FORCED RESPONSES 
The original equation of motion (Eq.(5)) can be expressed as 
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Using the modal expansion theory, the forced response ),( txy  can be expressed as: 

∑
=
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)()(),( ,                                                                         (15) 

where )(xwk  are normalized eigenfunctions of the cracked system and which are 
obtained from the above section (section 3), )(tqk  are generalized coordinates and N is 

 the number of terms used to approximate the solution. 

Substitute Eq.(15) into Eq. (14), multiplying by )(xw j , and integrating from 0 to 1 
leads to 
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The generalized coordinate )(tqk  are solved from Eq. (16) as: 
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and )0,()(0 xyxy = , )0,()(0 xyxy && =  are initial conditions of the system.  
  The eigenfunctions )(xwk  used in Eq. (17) are from Eq.(9) and can be expressed as: 
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Thus, the generalized forcing term )(tQk in Eq.(16) can be written as 
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In the range dvt ≤<0 , the rear axle does not enter the beam, the only moving load is 

the load of the front axle 1P  as in Eq. (18a). The term ∫ −
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After the generalized coordinates )(tqk  in Eq. (17) are obtained, the forced response 
solutions ),( txy can then be reconstructed from Eq. (15). 

 

5. CONCLUSIONS 

An analytical method is developed to present the dynamic responses of a cracked 
simply-supported beam subjected to a traveling vehicle load. The cracked beam system 
is modeled as a two-span beam and each span of the continuous beam is assumed to 
obey Euler-Bernoulli beam theory. The crack is modeled as a rotational spring with 
sectional flexibility and a traveling vehicle is modeled as two concentrated moving 
loads separated by the distance of the vehicle wheelbase. Considering the compatibility 
requirements on the crack, the relationships between these two spans can be obtained. 
By using the analytical transfer matrix method, eigensolutions of this cracked system 
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are obtained explicitly. The eigenfunctions obtained in this article are analytical 
solutions and forced responses can be obtained by the modal expansion of 
eigenfunctions. 
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