
 
 

ICSV14  
Cairns • Australia 
9-12 July, 2007 

 
 
 

 

1 

DETERMINATION OF MECHANICAL PROPERTIES OF A NON-
UNIFORM BEAM USING THE MEASUREMENT OF THE 

EXCITED LONGITUDINAL ELASTIC VIBRATIONS. 

Pavel Anokhin1 and Vladimir Gordon1 

1 Department of the mathematics, Orel State Technical University 
302020 Russia, Orel, Naugorskoe sh., 29 

gordon@ostu.ru 
 
 
Abstract 
 
The purpose of this paper is to present the statement of the inverse problem for longitudinal 
elastic vibrations of a non-uniform beam and the approximate analytical and numeric 
solutions of this problem under the condition of weak heterogeneity. To solve the inverse 
problem, certain longitudinal vibrations are excited in the beam and mechanical properties of 
the non-uniform beam (Young’s module and density) have to be determined from the 
measured vibration in a certain point of the beam. Under the condition of weak heterogeneity 
the problem doesn’t lose its importance. Weak heterogeneity can be found in many natural 
and produced materials. In this case it’s possible to linearize the problem, expressing the 
difference between the properties of the base homogeneous beam and the properties of the 
weak heterogeneous beam through the difference between their vibrations and solve the 
problem. The problem is decomposed into 2 sub-problems – finding the difference between 
vibrations of the uniform and non-uniform beams (solving the partial differential equation of 
the 2nd order with constant coefficients) and finding the difference between the mechanical 
properties of the beams (solving the system of linear ordinary differential equations of the 1st 
order). 

1. INTRODUCTION 

The equation describing distribution of longitudinal elastic waves in a non-uniform beam (in a 
dimensionless form): 

 ( ) ( ) ( )
2

2 , ,w wE fξ ρ ξ ξ τ
ξ ξ τ
⎛ ⎞∂ ∂ ∂

− =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (1) 

where ( ) ( )( )E E Aξ ξ ξ= , ( ) ( )( ) Aρ ξ ρ ξ ξ= ; 
ξ  - distance from an end face of the beam ( 0ξ = ) to the given section, 0 1ξ≤ ≤ ; 
τ  - dimensionless time; 
( )E ξ  - Young’s module; 
( )ρ ξ  - beam’s density; 
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( )A ξ  - the area of cross-section of the beam; 
( , )f ξ τ  - longitudinal distributed force; 

( , )w w ξ τ=  - longitudinal displacement of the beam’s cross-section. 
The equation (1) should satisfy boundary 

 ( )(0, ) 1, 0,w wτ τ= =  (2) 
and initial 

 ( ) ( )
( )

( )
,0

,0 , ww
ξ

ξ ϕ ξ ψ ξ
τ
∂

= =
∂

 (3) 

conditions. 
In this study, we investigate the inverse coefficient identification problem which 

requires the identification of unknown non-uniform coefficients ( ) ( ){ },E ξ ρ ξ  of the equation 

(1) satisfying (2) and (3) with known functions ( ) ( ) ( ){ }, , ,f ξ τ ϕ ξ ψ ξ , and also some data 
known on function ( ),w ξ τ  (the experimental data received from the measurement of the 
beam vibrations initiated by the given initial conditions and the distributed force). We use the 
data measurement of longitudinal displacement of the fixed beam’s cross section in time: 

 ( ) ( ) ( ) ( )
( )

( )
,

, , , , ,a b a
a

ww a w b
τ

τ χ τ τ χ τ γ τ
ξ
∂

= = =
∂

 (4) 

where a, b – distances from an end face of the beams to the studied cross-sections 
( 0 , 1a b< < ). 

We shall restrict ourselves to determination of only one coefficient, considering the 
other one known and constant. We shall consider, that ( ) constρ ξ ρ= =  is a known value. 
Thus the problem is reduced to determination of only ( )E ξ . 

In this study, the approximate analytical and the numeric solutions are investigated 
under the condition of weak heterogeneity of the beam. 

2. ANALYTICAL SOLUTION 

We shall solve the stated inverse problem analytically, based on a method of inverse problems 
solution suggested in [1]. We shall assume weak heterogeneity of the beam’s properties, i.e. 
 ( )0( ) ( ), 1,E E E Eε εξ ξ ξ= +  (5) 

where 0E const=  - is the property of the base homogeneous beam. 
Further we consider 0E  and ρ  to be known.  
We can express ( , )w w ξ τ=  as: 

 ( )0( , ) ( , ) ( , ), , 1.w w w wε εξ τ ξ τ ξ τ ξ τ= +  (6) 

Substituting expressions (5) and (6) in the equation (1), we receive: 
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( ) ( ) ( ) ( )

( )

( )

( )

1 2 3
2 0 2 0

0
1 2 2

2 2 0
0

2 2 2

3

, , , , ,

, ,

, ,

, .

F f F F

w wF E

w w wF E E

wF E

ε ε
ε

ε
ε

ξ τ ξ τ ξ τ ξ τ

ξ τ ρ
ξ τ

ξ τ ρ
ξ ξξ τ

ξ τ
ξ ξ

− = − +

∂ ∂
= −

∂ ∂

⎛ ⎞∂ ∂ ∂ ∂
= − + ⎜ ⎟⎜ ⎟∂ ∂∂ ∂ ⎝ ⎠

⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (7) 

The analytical solution of the problem is possible, when the following conditions are 
met (we do not affirm that the problem can’t be solved analytically if these conditions are not 
met, however these conditions are necessary for the solution offered below): 

• only natural vibrations are considered, i.e. ( ), 0f ξ τ ≡ ; 
• initial conditions are selected in such a way, that in a corresponding base homogeneous 

beam the same initial conditions excite harmonic vibrations; 
• ( ) ( )2 1, ,F Fξ τ ξ τ  and ( ) ( )3 2, ,F Fξ τ ξ τ  (these conditions are provided by the fact 

that the functions wε  and Eε  are small by absolute value, as given in (5) and (6)). 
 
If all specified conditions are met, the equation (7) splits up into two: 

 
2 0 2 0

0
2 2 0,w wE ρ

ξ τ
∂ ∂

− =
∂ ∂

  

with boundary and initial conditions given by: 

 ( ) ( )
( )

( )
0

0 0 0

,0

0, 1, 0, ( ,0) ( ), ww w w
ξ

τ τ ξ ϕ ξ ψ ξ
τ

∂
= = = =

∂
 (8) 

and 

 
2 2 0

0
2 2 ,w w wE E
ε ε

ερ
ξ ξξ τ

⎛ ⎞∂ ∂ ∂ ∂
− = − ⎜ ⎟⎜ ⎟∂ ∂∂ ∂ ⎝ ⎠

 (9) 

with homogeneous boundary and initial conditions: 

 ( ) ( )
( ),0

0, 1, 0, ( ,0) 0, 0.ww w w
ε

ε ε ε

ξ

τ τ ξ
τ

∂
= = = =

∂
 (10) 

Substituting expression (5) in experimental data (4), we obtain the additional source 
data for the solution: 

 ( ) ( ) ( ) ( )
( )

( ) ( )
( )

0
0

, ,

, , , .a a a a
a a

w ww a w a
ε

ε ε ε

τ τ

τ χ τ χ τ τ γ τ γ τ
ξ ξ

∂ ∂
= = − = = −

∂ ∂
 (11) 

To meet the condition of the harmonic vibrations in the base homogeneous beam, the 
displacement ( )0 ,w ξ τ  should take the form: 

 ( ) ( )( )0
0, sin sin cos , , , ,nw k B C k n N

k E
π ρξ τ α ξ ατ ατ α= + = = ∈  (12) 

which means that the initial conditions are restricted to be in the form: 

 ( ) ( ) ( )
( )

( ) ( )
0

0

,0

,0 sin , sin .ww C k B k
ξ

ξ ϕ ξ α ξ ψ ξ α α ξ
τ

∂
= = = =

∂
 

We consider all parameters of the initial conditions { }, ,B C n  to be known. Substituting 
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them in (12) we obtain ( )0 ,w ξ τ . 

Now we should obtain ( , )wε ξ τ  from the equation (9), boundary and initial conditions 
(10) and measurement data (11). Substituting (12) in (9), we get: 

 ( )( )( )
2

2
2 0 ( )cos sin cos .w w kk E k B C

E

ε ε
εα ξ α ξ ατ ατ

τ ξξ
∂ ∂ ∂

− = − +
∂ ∂∂

 (13) 

Applying operator 2 2Iα∂ + (I – identity operator) to the equation (13), we get the 
system of the differential equations: 

 

( )

2 2
2

2 2

2
2

2

( , ) ( , ) 0,

( , ), ( , ).

v vk

wv w
ε

ε

ξ τ ξ τ
ξ τ

ξ τξ τ α ξ τ
τ

⎧∂ ∂
− =⎪

∂ ∂⎪
⎨
⎪ ∂

= +⎪
∂⎩

 (14) 

Substituting the measurement data (11) in the second equation of the system (14), we 
obtain: 

 ( ) ( ) ( ) ( )
( )

( ) ( ) ( )2 2

,
, , .a av v

a a a a
a

d dvv a
d d

ε ε
ε ε

τ

χ τ γ τ
τ χ τ α χ τ γ τ α γ τ

τ ξ τ
∂

= = + = = +
∂

 (15) 

Solving the first equation of the system (14) and using the (15), we obtain ( ),v ξ τ : 

 ( ) ( ) ( )
( )

, .
2 2

ka k
v
av v

ka ka a
z dz

ka k ka k
v

k

τ ξ

τ ξ
γ

χ τ ξ χ τ ξ
ξ τ

+ −

+ −− + + + −
= +

∫
  

Solving the second equation of the system (14) with respect to ( , )wε ξ τ  and 
homogeneous initial conditions (10), we find: 

 
( ) ( )

( )
( )

( ) ( ) ( )
,0

1, ,0 cos sin , ,

sin , cos cos , sin
, .

Ww W W

v d v d
W

ε

ξ
ξ τ ξ ατ ατ ξ τ

α τ

ατ ξ τ ατ τ ατ ξ τ ατ τ
ξ τ

α

∂
= − − +

∂

−
= ∫ ∫

 (16) 

Substituting (16) in (13) and solving the ordinary differential equation with respect to 
( )Eε ξ , we find the solution to the inverse problem: 

 ( ) ( )
( ) ( )2 20

2
2 2

0

, ,1 ,
cos sin cos

w z w zEE D k dz
k k B C z

ε εξ
ε τ τ
ξ

α α ξ ατ ατ τ

⎡ ⎤⎛ ⎞∂ ∂
⎢ ⎥⎜ ⎟= − + −

⎜ ⎟+⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
∫   

where D is arbitrary constant subject to determination. We can define it, having set the value 
of Eε  at 0ξ = : 

 ( )
0

0
0 00 , .

E kE DE E D
k E

ε
ε ε α

α
= − = =  

3. NUMERIC SOLUTION 

The stated inverse problem can also be solved using the regularization method of Tikhonov & 
Arsenin [2], which requires finding the minimum of the functional with respect to Eε : 

 ( ) ( ) ( )( ) ( )( )
1 2 2

0
0 , ,aE

E w a E dε
ε ε ε ε

λ τ χ τ λ τ τ
⎡ ⎤

Φ = − +⎢ ⎥
⎣ ⎦
∫  (17) 
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where 0λ >  - regularization parameter; 

E
w ε
ε - solution of the equation (9) with boundary and initial conditions (10) and given 

( )Eε ξ ; 

( )a
εχ τ  - measurement data (11). 

Contrary to analytical solution, the regularization method can be used with arbitrary 
initial conditions and longitudinal distributed force. The following conditions remain 
unchanged (from analytical solution): ( ) ( )2 1, ,F Fξ τ ξ τ ; ( ) ( )3 2, ,F Fξ τ ξ τ . 

The solution of the equation (9) with boundary and initial conditions (10) is given by: 

 ( )

0 0

0
0

, ,

, ,
2E

z w z z w zE E dz
k k k k

w
E

ε

τ
ε ε

ε

τ τ τ τξ ξ τ ξ ξ τ
ξ ξ

ξ τ
ρ

⎡ ⎤− ∂ − − ∂ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦=
∫

  

where ( )0 ,w ξ τ  is the solution of the equation 

 ( )
2 0 2 0

0
2 2 , ,w wE f tρ ξ

ξ τ
∂ ∂

− =
∂ ∂

 

with boundary and initial conditions (8). 
Any solution ( )Eε ξ  found as the result of minimization of the functional (17) may not 

be unique. If ( )1Eε ξ  satisfies 

( )

0 0

0
0

, ,

, ,
2E

z w z z w zE a a E a a dz
k k k k

w a
E

ε

τ
ε ε

ε

τ τ τ ττ τ
ξ ξ

τ
ρ

⎡ ⎤− ∂ − − ∂ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦=
∫

 (18) 

and ( )0 ,w ξ τ  can be expressed as ( ) ( ) ( )0 0 0,w w wξ τξ τ ξ τ= , then 

 ( ) ( ) ( )0
2 1 2 ,E E w aε ε

ξξ ξ β ξ= + −   
where β  is an arbitrary constant, also satisfies (18). This means that the same vibrations at 
the fixed cross-section can be satisfied by infinitively many properties ( )Eε ξ . This should 
have been expected, as for any second-order differential equation we must define two 
functions to remove ambiguity from the solution. The analytical solution to the inverse 
problem also uses two functions (instead of one) to remove ambiguity. To avoid ambiguity in 
the regularization solution, we should modify the functional (17) to include two functions 
from the measurement results. We shall use the displacement in time of another cross-section 
at the distance bξ = . Modified functional will take the form: 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )( )
1 12 2 2

0 0
1 , , ,a bE E

E w a w b d E dε ε
ε ε ε ε ε ε

λ τ χ τ τ χ τ τ λ τ τ
⎡ ⎤

Φ = − + − +⎢ ⎥
⎣ ⎦
∫ ∫  (19) 

where ( ) ( ) ( ) ( )0, , ,a aw a w aε εχ τ τ χ τ τ= = −  ( ) ( ) ( ) ( )0, , .b bw b w bε εχ τ τ χ τ τ= = −  
To minimize functional (19) we shall use Ritz method, representing: 

 ( )
0

.
n i

i
i

E dε ξ ξ
=

= ∑  (20) 

To solve the minimization problem we now have to determine the set of coefficients 
{ }0 1, ,..., nd d d  of the (20), which will minimize the function of the n+1 variables: 
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( )
( ) ( ) ( ) ( )

( )

2 21

21 0 00
0 1 000

0 0

0

, ,

1 , ,..., ,
2

, , , .

n n
i i a i i b

n i in i
n i

i

i i

i

d I a d I b d

d d d d d
E

z w z z w zI z z dz
k k k k

ε ε

λ

τ

τ χ τ τ χ τ τ

λ τ τ
ρ

τ τ τ τξ τ ξ ξ ξ ξ
ξ ξ

= =

=

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥− + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎣ ⎦Φ = −⎜ ⎟⎜ ⎟
⎝ ⎠

⎡ ⎤− ∂ − − ∂ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= + + − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑∫
∑∫

∫

(21) 

To determine { }0 1, ,..., nd d d  we shall find extrema of the function (21). For this purpose 

we differentiate ( )0 11 , ,...,n
nd d dλΦ  in respect to each of it’s variables 0 1, ,..., nd d d  and, having 

equated to zero, we shall receive the system of n+1 equations and n+1 variables: 

 1
0, 0, .

n

j
j n

d
λ⎧∂Φ⎪ = =⎨ ∂⎪⎩

 (22) 

Each equation of the system will be of the following form: 

 ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

0
1

0
0

1

0 0

1
0,

2 1 ( , ) , , , ,
1 2

1 , , .

n n
j ji i

j i

ji i j i j

j j a j b

R d
d

I a I a I b I b d
i j E

R I a I b d
E

λ

ε ε

θ

λθ τ τ τ τ τ
ρ

τ χ τ τ χ τ τ
ρ

=

∂Φ
= + =

∂

= + +
+ +

= − +

∑

∫

∫

 (23) 

As can be seen from (23), the system (22) is linear. Solving the system (22) and 
substituting in (20), we shall obtain the solution ( )Eε ξ  of the inverse problem. Because 
system (22) is linear, it has exactly one solution if the determinant of the matrix θ  is not zero. 

4. EXAMPLE OF THE INVERSE PROBLEM SOLUTION 

In this section we shall show analytical and numeric solutions of the same inverse problem 
under the condition of weak heterogeneity. 

In order to solve the inverse problem, first we have to determine the results of the 
measurement (4). In this study we shall obtain these functions as the result of the solution of 
the direct problem with known heterogeneous beam properties. We shall use the following 
properties: 

 ( ) 160 , 9.
40

E ξ ρ
ξ

= =
+

 (24) 

Usage of the specified properties allows us to solve the problem of determining 
vibrations of such beam exactly. These properties also correspond to the base homogeneous 
beam with the properties 4, 9E ρ= = . We shall excite the harmonic vibrations in the base 
homogeneous beam by setting the initial conditions to: 
 ( ) ( )0, 3sin .ϕ ξ ψ ξ πξ= =  (25) 

Solving the direct problem, we obtain the vibrations of the weakly heterogeneous beam 

at the points 1 1,
2 3

a b= = . The difference between the vibrations of the base homogeneous and 

weakly heterogeneous beams are shown in Fig. 1. These functions will be used as the 
measurement data for the inverse problem. 
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a)    b)    c) 

Figure 1. Charts of the measurement data (difference between vibrations of the homogeneous 
and corresponding weakly heterogeneous beams): a – ( )a

εχ τ ; b – ( )a
εγ τ ; c - ( )b

εχ τ  
 
We shall now solve the inverse problem analytically – i.e. we should find ( )Eε ξ  by 

known initial conditions (25), properties of the base homogeneous beam ( 4, 9E ρ= = ) and 
measurement data ( ) ( ),a a

ε εχ τ γ τ . Carrying out all sequence of actions described in the second 

section of this study, we find ( )Eε ξ  taking into account that ( )0 0Eε = . The chart of this 
function is given in Fig. 2. Maximal deviation of the found function from the original function 
is 0,00532 or 5,32%. 

  
Figure 2. Chart of the function ( )Eε ξ , determined from the analytical inverse problem 

solution ( ), original (24) ( ) 
 
Now, solving the same problem using the regularization method, setting n=6 and 0λ = , 

we obtain: 
 ( ) 6 5 4 3 20,37 0,59 0,1 0,63 0,37 0,25 0,0044.Eε ξ ξ ξ ξ ξ ξ ξ= − − + − − −  

The chart of this function is given in Fig. 3. Maximal deviation of the found function 
from the original function is 0,00428 or 4,28%. 

 

 
Figure 3. Chart of the function ( )Eε ξ , determined from regularization method inverse 

problem solution ( ), original (24) ( ) 
 
As seen from the data and the charts, the results of both approaches to solution differ 

insignificantly. However, when solving the inverse problem we often have to deal with the 
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errors of measurement and also possible influence of unknown factors, which introduce some 
random noise into the measurement data. In this case the regularization method is more 
preferable than the analytical solution. 

To take the random noise into account, we shall add the random functions to the 
measurement data: 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * *

1 2 3, , ,a a b b a ae e eχ τ χ τ τ χ τ χ τ τ γ τ γ τ τ= + = + = +  (26) 
where ( ) ( ) ( )1 2 3, ,e e eτ τ τ  - the generated random functions not exceeding 10% of the 
measurement data by absolute value. 

Solving the inverse problem with the new measurement data (26) analytically, we obtain 
the results given in Fig. 4. Maximal deviation of the found function from the original function  
is 1,8 or 1800%. I.e. the measurement error in 10% results in solution error in 1800%. 

 
Figure 4. Chart of the function ( )Eε ξ , determined from the analytical inverse problem 
solution with the random noise added to measurement data ( ), original (24) ( ) 

 
Solving the problem using the regularization method, we obtain the results given in Fig. 

5. Maximal deviation of the found function from the original function  is 0,0082 or 8,2%. I.e. 
the measurement error in 10% results in solution error in 8,2%. 

 
Figure 5. Chart of the function ( )Eε ξ , determined from regularization method inverse 

problem solution with random noise added to measurement data ( ), original (24) ( ) 
 
As can be seen from the given results, the solution using the regularization method is 

much more stable to measurement errors than the analytical solution. 
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