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Abstract 
 
The analytical calculations of natural frequencies and forms of the longitudinal and flexural 
vibrations of the heterogeneous rods, which simulate ballistic missiles, are proposed. These 
objects are characteristic by significant drops in the distribution of stiffness and density along 
the length. The indicated dynamical characteristics knowledge is necessary for the design of 
the system of control and evaluation of the strength of articles.  
 
 

1. INTRODUCTION 
 

Traditionally [4] calculation of frequencies and forms of vibration of missiles is produced by 
the very labor-consuming method of sequential approximations.  

It is proposed to use the analytical method, operational and effective for the arbitrary 
laws of distribution of stiffness and densities, for the purpose of the reduction of time and cost 
of dynamic calculations at the stage of preliminary design (selection of layout, sizes and 
materials).  

The mathematical model of the dynamics of ballistic missile are received differential 
equations second and fourth – orders with the variable coefficients and the corresponding 
boundary and initial conditions, and also different assumptions and limitation. The essence of 
the proposed method is based on the ideas of the asymptotic phase integral method of 
Wentzel-Kramers-Brillouin and method of Liouville-Steklov [1-2]. According to the proposed 
method the calculation of the natural frequencies of oscillation is reduced to the calculation of 
several ten simplest integrals. The comparison of the executed calculations with the results, 
obtained by approval traditional method shows the high accuracy of the proposed method 
(divergence < 2%). Advantages of the method: analyticity, small labor expense, clarity, 
universality. For these reasons it is recommended for putting into practice of design. 



2. CONSTRUCTION OF THE APPROXIMATE SOLUTION EQUATION  
 

The equation of natural bending elastic vibrations of a rod with the any laws of distribution of 
the Young’s module ( )xEE = , axial moment of inertia ( )xJJ =  and area ( )xAA =  of cross 
section and density ( )xρ=ρ  along an axis of a rod x  looks like 
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where x  – axial co-ordinate, t – time, ( )txww ,=  – deflection. After entering parameters 
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where l – length of a rod, E*, J*, ρ*, A*  some meanings of the mechanical (E*, ρ*) and 
geometrical (J*, A*) characteristics of a rod, the equation (1) is resulted in a dimensionless kind 
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The solutions of equation (2) should satisfy certain boundary and entry conditions. 

Further the stationary vibrations are studied, therefore entry conditions do not formulate. The 
boundary conditions are entered at a conclusion eigenvalue equations. 

Believing harmonic vibrations, make separation of variables in the equation (2) (and in 
boundary conditions) with the help of representation 

 
( ) ( ),exp τξ= ipWw                                                          (3) 

 

where W=W(ξ) and p – eigenfunction and circular frequency of vibrations. Substituting (3) in 
(2) we shall receive the equation 

 

( )[ ] ( ) 02 =ξ−″′′ξ WpSWG ,                                                  (4) 
 

where stroke means differentiation on ξ. For approximate solution of equation (4) we use 
procedure of matrix variant of a method of phase integrals [2]. 

Let's present the equation (4) as system of four equations of 1-st order, for what we shall 
enter unknowns 
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In the matrix form the system of the equations connecting entered unknowns (5), looks like 
 

TYY =′ ,                                                             (6) 
 

where Y – column-vector unknowns jy  ( 4,3,2,1=j ), T – square (4х4) matrix containing 
coefficients of equation (4) 

Let's enter transformation of unknowns (5) kinds 
 

,UFY =                                                              (7) 



 

where U – square (4 х 4), nondegenerate matrix ,
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Columns of matrix U  are formed by components of latent vectors ( )4,3,2,1=kUk  
matrix Т, F – column-vector new unknowns ( )4,3,2,1=jf j . Substituting (7) in (6), we shall 
receive system of the equations concerning functions jf  in matrix 

 

FUUTUFUF ′−= −− 11' .                                                     (8)  
 

Structure of system of the equations (8) differs from structure of initial system of the 
equations (6) essentially.  

Assuming a little of collateral elements of matrix UU ′−1 , that is neglecting interaction 
of the equations of system (8), we shall split system (8) up into four independent equations for 
functions jf  
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Whence, integrating, we shall receive 
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Taking into account (7) and (5), shall receive function of deflections as 
 

( ) ( )[ ( ) ( )]0,exp0,exp0,exp0,exp 44332211 ξωε+ξωε+ξωε+ξωε= CCCCqW ,        (10) 
 

where ( ) 2/1−αβ=q . 
Thus, we accept functions (9) as  approximate partial solutions of the initial equation 

(4), and their sum (10) – as good-enough general solution. 
 

 
3. EQUATIONS AND FORMULAS FOR FREQUENCIES 

 
Having the partial solution (9) equations of bending vibrations of a rod (4) consecutive 
differentiation are possible to receive kinematic ( )ω′ω,  and force ( )QM ,  factors of a task 
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The standard procedure of satisfaction to boundary conditions results in homogeneous 
system of the algebraic equations concerning constant ( )4,3,2,1=jC j . Existence condition of 
non-trivial solution for this system gives the eigenfrequencies. The non-trivial solution 
defines the form eigenfunctions.  

By us is shown [3], that for various types of support can be used asymptotic 
representation of the equations frequency of a kind  
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Let's result some private kinds of functions ( ) ( )2/1
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The similar correlations for hinge and restrained rods are received.  
For account of own frequencies is applicable to the equation (12) general theorem about 

nulls of function with known asymptotic representation [3]: if the functions ( ),2/1
0 pΠ  
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also form an infinite sequence 
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The application to the equation (12) theorem of nulls of function with known 

asymptotic representation gives uniform asymptotic expression for frequencies for several 
types support of a kind 
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where −n  number of frequency, ( )∫ ξ= −
1

0

4/11 dSGB ; −jnjj CVA ,,  known functions dependent 

on a type support, −λnj  frequencies of null approach determined from the appropriate 
equations of a classical kind (for example, for the cantilever 01cos 22 =−λλ ch ). 

The index j  characterizes a type support: 1 – restrained, 2 – cantilever, 3 – hinges on 
the ends, 4 – free ends. The asymptotic representation for the forms of own vibrations in a 
case of bending vibrations looks like  
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where ( )ξ= ∗∗
njnj WW  –  form of own vibrations of the appropriate homogeneous rods with 

frequencies 2/1
njP , that is WKB – approach, −njnjnjnj DCBA ,,,  constant, determined by a 

kind support of a rod. 
 
 

4. NUMERICAL RESULTS 
 
4.1. Longitudinal Vibrations 
 
For the accuracy estimation of the offered technique for the calculation of eigen forms and 
vibrations frequencies of rods with a variable rigidity and density we’ll calculate the main 
frequency of longitudinal vibrations of the bar with the staged change of the rigidity and 
density along the axis. 

Distribution diagrams in Figure 1 [4]. characterize rigidity distribution for stretching-
pressure FE  and a mass m  ballistic missile and taken from the work [4], where it is shown a 

value of the main frequency for longitudinal vibrations 
sec
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p = , found with the 

method of consistent approximations, usually used in designing calculations. It is shown here 
a calculation technique basic results of which are in the table 19.1 [4]. 

In short, the calculation algorithm of frequencies for own vibrations according to the 
method of sequent approximations consists of the following actions. 

One presets the main form of eigen vibrations for homogeneous bar simulating a missile 
of homogeneous bar with free ends ( )xf ; one divides a bar into N  parts of equal length ∆ 
and with the aid of tables taking into account boundary conditions one formulates function 

( )xf1 , considered further as initial for the second approximation and so on; one calculates the 
main frequency of eigen vibrations. At the calculation of the second and next forms and 
frequencies one uses a property of form orthogonality. In columns (19), (20), and (21) of the 
table 19.1 [4] the values of the first, the second and the third approximations of the main form 
of vibrations are shown accordingly. We’ll present a formula for the calculation of the main 
frequency and a concrete result, corresponding to the distribution diagram in Figure 1. 



 
 

 
 
 
 
 
 
 
 
 
 

Figure 1. Distribution of rigidity for stretching-pressure FE  and the mass m   
along length of the ballistic missile 
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The solution of this problem is based on correlations for equations of the second order, 
analogous shown in this paper, describing longitudinal fluctuations, gained by S.N. 
Ovsyannikova [5], and has a kind for a dimensionless frequency. 
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Further one uses data of the distribution diagrams on Figure 1, the integration interval is 

divided into parts with the constant laws of change EF  and m  within every part. After this 
the problem is reduced to the calculation of twenty simplest integrals. 
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After dimension parameters introduction it is gained 
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Comparison of results (15) and (16) depicts, that the difference of the values determined 

does not exceed 3%. 
 
4.2. Bending vibrations 
 
We’ll perform the analogous comparison for the case of bending vibrations of the bar, 
modeling missile with the length 15 м and rigidity EJ  and mass characteristics m , shown in 
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Figure 2 [4]. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 2. Distribution of bending rigidity EJ  and the mass m  along length of missile 
 
The usual calculation according to the method of sequent approximations is fulfilled 

through the analogous algorithm and for the case, corresponding to distributions on Figure 2, 
in the third approximation gives the main frequency of bending vibrations [4] 
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In our case for the calculation of bending vibrations eigen frequencies it is convenient to 

use the unified asymptotic formula for the parameter of the eigen frequency of heterogeneous 
bar (14), where λnj – parameter of eigen frequency of the corresponding homogeneous bar 

(for example, λ11=4.73, λ12=7.86, …, λ13=λ11, λ23=λ21, …);
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parameter of eigen frequency, corresponding approximation WKB. 
Functions jnjj CVA ,,  are determined by use of dependences (11), (10) and have a kind 

in particular 
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We’ll show values of the calculation parameters for the example under consideration in 
Figure 2  
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Further 
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Then from the formula (14) and taking into account the first two items we’ll gain a 

parameter of the main frequency  
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Comparing formulae (17) and (18) we see that they practically coincide (the error ≈0,7%). 
The examples shown depict the efficiency of the technique offered, high accuracy and 

its advantage regarding usual difficult methods [4]. 
 
 

5. CONCLUSION 
 

The received results of a method are based on ideas asymptotical method of phase integrals 
WKB and method Liouville-Steklov. The offered method with the specified classical methods 
unites the item of information of tasks to systems of the integral equations with their 
subsequent solution by iterations and representation of the solution through resolventa.  

Advantage of a method is that fact, that for its application it is not required, that the 
coefficients of the initial equation poorly should differ from constant, there is enough, that 
they were bounded. However, the method is especially effective, if the coefficients of the 
initial equation really describe weak heterogeneity.  

Offered approach to the search of the approximate solutions of the differential equation 
with variable coefficients, when the exact solution is not found, is rational. There are exact 
solutions of the initial problem, that was specifically changed and this change is easier to 
explain, than any approximation made during numerical or any other approximate solution. 
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