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Dedication 
 
The first author would like to dedicate this paper to the memory of the second author. 
Professor Liviu Isidor Librescu died on April 16, 2007, while on duty. He was teaching class 
when the mass shootings occurred at the ESM department at Virginia Tech. Dr. Librescu was 
a very fine and caring person, outstanding academician, and an inspiring graduate research 
advisor. His heroic act during his last moments, which helped save the lives of students in his 
classroom, is well documented. His fond memories shall be cherished and will continue to 
inspire. 
 
Abstract 
 
Active control of a thin-walled rotating beam with pretwist, double-taper, and a tip rotor, is 
considered using the higher-order shear deformation theory (HSDT). The beam comprises an 
orthotropic host with surface-embedded transversely isotropic (PZT-4) sensor-actuator pairs. 
Span-wise and thickness-wise variation is considered for the electric field applied to actuators. 
This yields a coupled electro-mechanical system, wherein displacement variables are coupled 
via the electric field. Optimal LQR control with state feedback is used to obtain the control 
input (charge density applied to actuators). Parametric studies involving ply-angle, rotation 
speeds of beam and rotor, pretwist, taper, rotor mass, and saturation constraint on actuator 
voltage, are performed. The present model yields an order-of-magnitude reduction in settling 
time and control voltage/power, and lower response, vis-a-vis the decoupled approach. 

1. INTRODUCTION 

Fiber-reinforced composites with embedded piezoelectric elements provide a synthesis of 
passive and active control. Design of optimal controllers - yielding reduced settling time and 
control energy - require an accurate plant model incorporating shearability, satisfaction of 
traction free boundary conditions (BCs), warping restraint, etc.  

Kim and White [1] analyzed a non-rotating thick-walled beam using a cubic variation of 
axial displacements to satify the traction free BCs. Eigenvibration analyses for rotating blades 
were done by Jung et. al. [2] within the First-Order Shear Deformation Theory (FSDT), by 
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Song et al. [3] for a beam with tip rotor, and by Chandiramani et al. [4] considering a 
pretwisted composite blade and the HSDT. Significant eigenfrequency enhancements were 
reported in the latter work, which was extended by Shete et al. [5] for optimal control using 
PZT actuation and an uncoupled electromechanical formulation. A pretwisted blade with a tip 
mass was analyzed by Yoo et al. [6] by retaining gyroscopic effects and using hybrid 
deformation variables to linearize the system.  

Kunz [7] analyzed a saturation controller and found it effective in reducing tip responses 
even at moderately high rotation speeds and despite significant intermodal coupling. Cai and 
Lim [8] designed an optimal tracking controller for a flexible hub-beam system by neglecting 
the axial deformation effects. Wei et al. [9] presented experimental results on control of an 
angular-accelerating sandwich-beam comprising an ER fluid core with aluminium surface 
layers. Choi et al. [10] considered PVDF sensors and piezoelectric fibers for actuation (i.e., 
macro-fiber composites – MFC’s) using negative velocity feedback control.  

Optimal control of flexural vibration in a composite plate - with piezo sensors/actuators 
covering the plan - was studied by Ray [11] using output feedback and coupled charge-
mechanical equations. Genetic algorithms for optimal sensor/actuator placement have been 
used by Han and Lee [12] using controllability, observability, and spillover prevention 
criteria, and by Liu et al. [13] using the 2H  norm.  

Herein, a HSDT model for pretwisted, composite blades [5] is extended to include a tip 
rotor, double-taper, and spanwise distributed PZT-4 sensor-actuator pairs. The coupled 
electromechanical system is solved using optimal control with state feedback, to obtain the 
control input. Influence of shear deformation, pretwist and taper, and the tip rotor are 
assessed. 

2. FORMULATION 

Consider a straight, pretwisted, doubly-tapered, single celled box beam with tip rotor (mass 
, spin speed Rm RkΩ ) mounted on a rigid hub (radius , rotation speed ) (Fig. 1).  0R jJ Ω=Ω
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Figure 1. Tapered beam with tip rotor. 

 

 
 

Figure 2. Cross-sectional view. 

 
 
The beam-fixed coordinate system ( zyx ,, ) originates at the beam root, ( ) is a local 
(surface) coordinate system, and ( ) are local coordinates along the cross section 
principal axes. The beam-fixed and rotor-fixed bases are ( ) and ( ), 
respectively. The coordinates are defined as 

zns ,,
ppp zyx ,,

kji ,, RRR kji ,,

ppppp zzsysxzsysysxzsx =+=−= ;cos][sin][],[;sin][cos][],[ ββββ                   (1) 
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where the overbar denotes mid-surface quantities ( 0=n ). The quadratically varying pretwist 
is considered as   2

10 )/(/][ LzLzz ββγβ ++=

2.1 Kinematics 

The assumptions include a spanwise dependent twist rate, quadratic variation of transverse 
shear strains through wall thickness, secondary warping, and no in-plane cross-section 
distortion. Imposing the traction free BC's yields the transverse shear strain distribution 
(HSDT) as  

];[)/41(];;[)/41( 2222 tzhntzhn yzyzxzxz γγγγ −=−=                                                         (2) 

The lag ( ), flap ( ), and extensional ( ) displacements are 
obtained  in terms of the corresponding displacements , ,  of a reference 
point  on the cross-section, twist 

];,,[ tzyxu ];,,[ tzyxv ];,,[ tzyxw
];[ tzuo ];[ tzvo ];[ tzwo

]0,0[O ];[ tzφ , and the rotations ];[ tzxθ  and ];[ tzyθ  about x 
and y axes, respectively (Chandiramani et al. [4]). 

2.2 Piezopatch Distribution 

The PZT-4 sensor and actuator patches are embedded on the bottom and top face, 
respectively, with their surface of isotropy being parallel to the mid-surface of the pretwisted 
beam (Fig. 2). The electric potential distribution ];[];,,[ tzntzns oψψ =  is considered, 
yielding the electric field as 

];[/;/;0/ 321 tznEnzEsE oo ψψψψψ −=∂−∂=′−=∂−∂==∂−∂=                               (3) 

2.3 Stress Field 

The stress-strain relation for a constituent beam-wall layer is 
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where, ijQ  and ijς  are transformed reduced stiffnesses and reduced piezoelectric coefficients 
of the composite beam (details omitted for brevity). Introducing the strain field and 
integrating over the cross-section, these 3-D constitutive equations are reduced to a 1-D 
dependency, thus yielding the beam forces and moments.  

2.4 Governing Equations of Motion 

Hamiltons principle for the beam with rotor reads 

( ) ( ) ( ) 0~1

0
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Here kσ , k , U σ , ψ , Η~ , R , R , and ijR ξ  denote surface traction vector, displacement 
vector, applied surface charge density, electric potential, electric enthalpy, position vector for 
deformed beam, position vector for rotor, and dielectric constants (details omitted), 
respectively.  

A vertical (y-directed) line load,  is assumed. The resulting seven 
electromechanical equations of motion (EOM) and BC's exhibit a 1-D dependency on the 
spanwise (z) coordinate, and are in terms of displacement field variables ou , o , x

];[ tzpy

v θ , yθ , o , w
φ , and electric potential oψ . Since the beam is directed radially outward from the hub, 
Coriolis effects due to beam rotation (Ω ) are negligible. The Circumferentially Uniform 
Stiffness (CUS) ply angle configuration is considered (Song et al. [3]). This yields a 
linearized and coupled system governing the motion (bending - transverse shear, i.e., flap-lag, 
and extension-twist) and the electric potential. The coupling occurs via oψ . When a spatially 
constant electric potential is assumed, flap-lag and extension-twist motions decouple in 
contrast to the present case. Representative (  and ou oψ ) EOM's are:  
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The boundary conditions at the clamped end ( 0=z ) are 

0==′===′=′==== ooooxyoo wvuvu ψφφθθ                                                                  (9) 

Here ( , ) are global stiffnesses, the former including pretwist and HSDT effects, 
( Pyyxx ,191 ωω ) are structural and mass quantities, ( PiPi

][~ zaij ][zaij
ppp IbIIIII ˆ,,,,,,L aa ,~ ) are global 

piezoelectric coefficients, and  contains the centrifugal stiffening effect (details omitted). ][zR
The surface charge density on actuators due to applied voltage is given by 

][ˆ][];[ 7 tztz T σφ=σ                                                                    (10) 

where  is the control input to be determined via LQR control. The displacement field is 
expressed in terms of trial functions and generalized coordinates as 

][ˆ tσ

])[][,],[][( 7711 tztzwvu TT
oyxooo qφqφ L======= ψφθθ                                             (11) 

Using the extended Galerkin method (Shete et al. [5]) and eliminating the electrical degree of 
freedom oψ  via Eq.(8), the discretized system resulting from the displacement governing 
equations is obtained as  

TTTtt }||{];[ˆ][ 61 qqqσFQKqqGqM L&&& =−=++                                           (12) 

4 



ICSV14 • 9-12 July 2007 • Cairns • Australia 

The quantities NNNNN ××× 61666 , and 1  represent the gyroscopic matrix due to 
rotor, external forcing, piezoelectrically induced forcing coefficients, and time dependent 
charge density vector applied on actuators, respectively.  

||| F,Q,G |ˆ ×Nσ

3. OPTIMAL CONTROL 

3.1 Sensor Output 

Applying Gauss' law on the exposed surface of sensors, the total charge generated is given as 

2/3 |~
hnzsz sP dsdzfSDq =∫ ∫=                                                      (13) 

Since no voltage is applied to sensors and 0=ssε , the n-component of electric 
displacement is zzD ες313 = . Introducing the strain )( wzz ′=ε  and performing the spatial 
discretization yields  

]||[;][~
61 CCCCq L==tqP                                           (14) 

with , being N-dimensional row vectors (details omitted). The sensor patches are 
treated as capacitors with capacitance 

6,,1, L=iiC
PPP tAC /33ξ= , where  is the patch surface area. 

Hence, the voltage applied on actuators is given as 
PA

                                           (15) ∫ ∫=
L
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Here ss  denote s-wise distribution of sensors and actuators, respectively, and  is their 
spanwise distribution. The current from sensors is 

AS , zf
PqtI &~][ =  and power required is . uIP =

3.2 LQR Control 

Using , the state space represenatation of the system, i.e., Eq. (12), is TTT }|{ qqx &=
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One seeks the optimal control input  that minimizes the cost index  ][ˆ tσ

∫ += ft

t

TT
a dtJ

0

)ˆˆ( σRσZxx                                                     (17) 

where R  is the positive definite control weighting matrix chosen as ,  is the 
positive semi-definite state weighting matrix representing mechanical energy, i.e., 

, and 

FKFR 1−= Tη Z

TTTTT ]|[ MqKqZx &μα= ημα ,,  are suitably chosen weights. The cost minimization yields 
the optimal control input as 

PWRGGxσ T1;ˆ −=−=                                            (18) 

where  is the solution of the Algebraic Riccati Equation (ARE) P

                                           (19) 0ZPWPWRPAPA =+−+ − TT 1
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The ARE is solved using stable eigenvectors of the Hamiltonian matrix of the LQR 
system (Potter [14]). Hence, from Eqs. (15) and (18), the actuator voltage for optimal control 
is given by  

∫ ∫ −=−=
L

zs
TT

P dsdzfACtu
0

2

0

1
7/1ˆ;ˆ][

κ
PWRφGxG                                                     (20) 

In order to avoid saturation of the piezoactuators the voltage is limited to  
whenever , where  is the actuator saturation voltage. 

max]sgn[ Vu
max|| Vu ≥ maxV

4. RESULTS AND DISCUSSIONS 

A single ply Graphite-Epoxy host structure is considered. The properties for the host and 
piezopatches (PZT-4) are taken from Song et al. [3]. The data used is m, 

m, m,  m, 
2032.00 =R

032.2=L 0254.0=b =c 127.0 0127.0=h m, 0381.0=κ m,  m, 
taper ratio 

=Pt 00127.0
25.0/ roottip == ccσ , mmR =  1= kg. The trial functions satisfying BC's at the root 

are   ,}{ 432
621

Tzzz L=== φφφ === 543 φφφ  . The default case is 
for HSDT and a linearly pretwisted beam, with 

Tzzz }{ 32
7 L=φ

100=Ω rad/s, Nm63.875=mp -1, and 
piezopatch pair extending over the span. The nondimensional controlled tip response 

, control voltage u, and power P are plotted.  LtLvv oo /];[* =
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Figure 3. Effect of taper on eigenfrequencies. 
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Figure 4. Effect of tip mass on eigenfrequencies. 
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Figure 6. Response for uniform electric field [5]. 

Figure 3 shows the effect of taper on the eigenfrequencies for pretwist 0 , ply-
angle , beam speed rad/s, and rotor speed 

o15=β
o45=θ 200=Ω 200=Ω rad/s. There is a rapid 

decrease in the eigenfrequencies in the range 05.00 ≤≤σ . For 2.0≥σ  the taper has a 
negligible effect on the first two frequencies, and the third one shows a stiffening effect when 
the taper is reduced. The gyroscopic softening effect appears in Fig. 4 where the rotor mass 
causes a reduction in eigenfrequencies (especially the first and third ones). Figure 5 show the 
comparison of the three formulations for linear and quadratically varying pretwist with 

, 1 , 2 , 0 , o90=θ o45=β =β =βo45 o90 250=Ω rad/s. The HSDT formulation yields the 
lowest coupled natural frequencies, thus providing conservative data for use in attaining non-
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resonant passive as well as active control designs. This emphasizes the importance of 
considering variations in transverse shear across the beam wall. 

A comparison of the present control scheme (i.e., electric field varying along span) with 
the one considered in Shete et al. [5] (i.e., uniform electric field) is done for the rotorless 
beam with . The present scheme yields an order-of-magnitude reduction in settling 
time, control voltage, and power required, as well as lower response, as evident from Figs. 8-9 
when compared to Figs. 6-7. When considering a saturation constraint on the actuator voltage, 
the peak power requirement is reduced fivefold as seen in Fig. 10. Gyroscopic forces due to 
the the tip rotor appear to have a pronounced qualitative effect on the response when 
considering stuctural tailoring along with active control. In contrast with the rotorless system 
(Fig. 8), when the tip rotor is present the response attenuation is greater for a smaller ply-
angle beam (Fig. 11).  
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Figure 11. Response due to sonic boom. 
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Figure 12. Effect of taper ratio on response. 

 
Figure 12 shows the effect of taper on tip response, for 0 , , 

rad/s, 
o30=β o30=θ

400=Ω 40=Ω rad/s, and step forcing. As expected, the response increases with taper, 
i.e., a uniform cross-section beam has the lowest response, due to its bending rigidity being 
uniformly higher over the span. Due to centrifugal stiffening arising from increased rotor 
mass, the response gets attenuated as shown in Fig. 13. When comparing the untwisted, 
linearly pretwisted, and parabolically pretwisted beam, the response is intermediate for 
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parabolic pretwist and lowest for linear pretwist as shown in Fig. 14. However, the control 
voltage and power is approximately the same for linear and parabolic pretwist. 

5. CONCLUSIONS 

A HSDT structural model for a rotating, doubly-tapered, pretwisted, composite blade, with 
piezoelectric sensors-actuator pairs, and a tip rotor is developed. The optimal control problem 
is studied for wide range of excitations. A spanwise varying electric field is considered, 
yielding a coupled electromechanical system as opposed to when a uniform field is 
considered. This results in increased attenuation, and reduced settling time and control 
voltage/power. The parametric studies performed underscore the importance of synthesizing 
active control and structural tailoring in achieving control effective designs. 
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