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Abstract 
 
The complex flow and sound fields inside silencers require a three-dimensional numerical 
method for the accurate prediction of acoustic attenuation characteristics of silencers. In the 
present study, the dual reciprocity boundary element method (DRBEM) is developed to predict 
and analyze the acoustic attenuation characteristics of the silencers with higher Mach number 
subsonic flow. In order to overcome the singularity in the single domain BEM for complex 
silencer analysis and to reduce the computational time, the substructure approach is employed. 
The effect of flow on acoustic attenuation performance of the silencers is investigated. 

1. INTRODUCTION 

In the engine exhaust silencing systems, the presence of gas flow will influence the sound 
propagation inside silencers, and therefore may affect the acoustic attenuation performance of 
the silencers [1]. In view of the complex flow and sound fields inside the silencers, a 
three-dimensional numerical method is needed for the accurate prediction of the acoustic 
attenuation characteristics of silencers. The boundary element method is an effective and 
powerful numerical method, and has been widely used to evaluate different types of 
engineering problems. The boundary element method has been developed to predict the 
acoustic attenuation performance of silencers without flow [2], with uniform flow [3] and low 
Mach number non-uniform flow [4]. However, the conventional boundary element method 
(CBEM) is not suitable for solving the acoustic problems of silencers with higher Mach number 
subsonic flow, due to the presence of domain integral. 

The dual reciprocity method [5] (DRM) is a method that converts the domain integral into 
the boundary integral. Applying the DRM to boundary element method forms the so-called 
dual reciprocity boundary element method [6] (DRBEM). Lee, et al [7] used the DRBEM to 
model the acoustic radiation in a subsonic non-uniform flow field, and indicated that the 
Sommerfeld-radiation condition at infinite is satisfied when DRBEM is used to deal with this 
problem. Perrey-Debain [8] applied DRBEM to calculate the sound field in the straight ducts 
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with uniform flow. However, the application of DRBEM to predict the acoustic attenuation 
performance of silencers with three-dimensional complex flow has not been reported in the 
literature. 

For the silencers with complex internal structure, using traditional single domain BEM 
will generate the singular integrals, which make numerical operation more complex and lead to 
large computational errors. The substructure approach may be used to avoid the singular 
integrals and save the computational time. The substructure BEM [3, 9] divides the complex 
structure of a silencer into a number of substructures and then the BEM is applied to each one of 
these substructures leading to a system of equations. Continuity of sound pressure and normal 
particle velocity is then enforced at the interface between any two neighboring substructures, 
therefore all of unknown sound pressure and normal particle velocity on the boundary may be 
evaluated. The major disadvantage of DRBEM is huge computational works and long 
time-consuming [10]. For instance, there are 3 matrix multiplies and inverse matrix evaluation 
in DRBEM, the computational work needed is related to 3/)(13 3LN + , while the 
computational work for CBEM is 3/3N , here N and L are the collocation points on the 
boundary and in the volume, respectively. Thus, the computational time using DRBEM is 13 
times approximately of that using CBEM. The substructure approach is an effective method to 
reduce the computational time of DRBEM. For the acoustic analysis of silencers, we need to 
calculate usually the four-pole parameters and transmission loss, and it is not necessary to 
examine its internal sound field, so the application of substructure DRBEM to this problem may 
reduce the computational time and improve the numerical accuracy significantly. 

The objectives of the present study are (1) to develop the substructure DRBEM to predict 
the acoustic attenuation performance of complex silencer with higher Mach number subsonic 
flow, (2) to investigate the effect of complex potential flow on the acoustic attenuation 
performance of silencers, and (3) to examine the efficiency of substructure approach for 
increasing computational speed.  

2. GOVERNING EQUATIONS 

The flow Mach number in engine exhaust silencing systems is usually less than 0.3, therefore 
the flow field inside the silencer may be considered as the incompressible potential flow which 
is governed by Laplace equation 

02 =Φ∇ L                                                            (1) 

where LΦ  is the velocity potential. The flow field may be obtained by solving Eq. (1). 
Considering the incompressible potential flow field and homogenous medium, the 

harmonic wave propagation is controlled by [11] 

0))(()(2j22 =Φ∇•∇•−Φ∇•−Φ+Φ∇ MMMkk                  (2) 

where Φ  is the acoustic velocity potential, 0/ ck ω=  is the wavenumber, ω  is the circular 
frequency, 0c  is the sound speed in the stationary medium, 00 / cVM =  is flow Mach number, 

0V  is the flow velocity of the medium, and 1j −=  is the imaginary unit. 
The acoustic pressure p  and particle velocity u  may be expressed as 

)j( 00 Φ∇•+Φ= Vωρp ,     Φ−∇=u                                            (3, 4) 

where 0ρ  is the medium density . 
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3. DUAL RECIPROCITY BOUNDARY ELEMEN METHOD 

Moving all terms involving the flow in Eq. (2) to the right-hand side yields 

)(22 Φ=Φ+Φ∇ bk                                                                      (5) 

where 

 ))(()(2j)( Φ∇•∇•+Φ∇•=Φ MMMkb                                                  (6) 

The integral formulation for Eq. (5) is expressed 
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LG  is the fundamental solution of Laplace equation, and G  is the fundamental solution of 
Helmholtz equation. For the three-dimensional problem, 
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Eq. (7) contains volume integral, which may be converted to the boundary integral by 
using DRM. )(Φb  may be approximated by the following expression 

∑=Φ
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=
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i
ii fb

1
)( α                                                                   (11) 

where iα  are the undetermined coefficients, if  is a simple source (approximate) function. For 
each point on the boundary and in the volume, N  is the number of collocation points on the 
boundary, and L  is the number of collocation points in the volume. Reconstructing Eq. (11) 
leads the following matrix 

Fαb =                                                                           (12) 

where b  is an 1)( ×+ LN  vector that contains the function values of b  at the collocation 
points, F  is an )()( LNLN +×+ matrix, and α  is an 1)( ×+ LN coefficient vector. For each 
simple source function if , a particular solution iϕ   needs to be found and satisfied 

iii fk =+∇ ϕϕ 22                                                                    (13) 

One of the key ingredients of the dual reciprocity method is the expansion introduced in 
Eq. (11). There are virtually an infinite number of ways to choose if  for use in the expansion. 
The trouble is that we have to find the associated particular solution iϕ  for each choice of if . 
The usual practice is to construct iϕ  first and then find if  from Eq. (13).  

In the dual reciprocity method, if  is chosen usually as [6] 

ii rf += 1                                                                           (14) 

For the problem in the present paper, we use the following particular solution iϕ  [8,12]  
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where ( ) ( ) ( )222
iiii zzyyxxr −+−+−= . 

Substituting Eqs. (11) and（13）into Eq. (7) yields: 
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By using discretization and numerical integration for Eq. (16), and combining Eq. (12), 
the following algebraic system of equations in matrix form may be obtained 

bRFRαΦGHΦ 1−==
∂
∂

−
n

                                                         (17) 

where H  andG  are the BEM coefficient matrices, R is a matrix obtained by integrating the 
known particular integral contained in { } of Eq. (16). From Eq. (6), it may be seen that b is a 
function of  the first- and second-order derivatives of Φ . The derivatives of Φ  can be obtained 
by first introducing a set of global interpolating functions for Φ  and then differentiating the 
interpolating functions, therefore the values of b at each point may be determined. We choose 

βE=Φ                                                                          (18) 

where )()(1 ][ LNLNijf +×+=E  is the coefficient matrix formed by the global interpolating 
functions ijf1 , β  is the undetermined coefficients for each collocation points. Eventually, the 
nodal values of )(Φb  at the collocation points can be written as:  

BΦb =                                                                        (19) 

where B  is a coefficient matrix that depends on the choice of E . Substituting Eq. (19) into Eq. 
(17) gives: 

BΦRFRαΦGHΦ 1−==
∂
∂

−
n

                                                    (20) 

Combining the boundary conditions, Eq. (20) may be solved and the unknown variables 
are obtained. 

The accuracy of the dual reciprocity method will also depend on the choice of 1f  used in 
the interpolating and differentiating Φ . The global interpolating functions contained in E  
should be as simple as possible because differentiation of complicated functions may result in 
peculiar behaviors. Here we choose 

32
1 1 ijijij rrf ++=                                                             (21) 

which is suitable for the problems contained derivatives in the source term )(Φb  [13], and 

( ) ( ) ( )222
iiiiiiij zzyyxxr −+−+−= . 
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4. SUBSTRUCTURE APPROACH 

Figure 1 shows an acoustic system composed of two substructures with a common interface, the 
relationships between sound pressures and normal particle velocities may be expressed as 
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where, ip  and iu , sp  and su , op  and ou are the sound pressures and particle velocities on 

inlet of substructure 1, common interface and outlet of substructure 2, respectively, 1
ijZ  and 2

ijZ  
are the elements of impedance matrices for the substructures 1 and 2, respectively. 

 
Figure 1. Two substructures with a common interface. 

Using the continuity conditions of sound pressure and particle velocity on the common 
interface, the following relationship of sound pressures and particle velocities on the inlet and 
outlet of the system may be given 
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For the acoustic system with multiple substructures, the similar method may be used to 
get the overall impedance matrix for the entire system. When the plane wave conditions are 
satisfied on the inlet and outlet of the silencer, the four-pole parameters may be obtained and 
expressed as 
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where ip , iu , op and ou  are the sound pressures and particle velocities on the inlet and outlet 
of the silencer, respectively, 0ρ  and 0c  are the medium density and sound speed , 2111 / ZZA = , 

)/()/( 0021221112 cZZZZB ρ−= , 2100 / ZcC ρ= , and 2122 / ZZD −= . 
Thereby, the transmission loss of a silencer is given by [3] 

o

i
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where iS  and oS  are the cross-sectional areas of inlet and outlet of the silencer, respectively. 
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5. RUSULTS AND DISCUSSION 

The double expansion chamber silencer with inter-connecting tubes, as shown in Figure 2, is 
considered to investigate the effect of three-dimensional flow on the acoustic attenuation 
performance of the silencer, and to examine the efficiency of the substructure DRBEM. 

In order to apply the substructure DRBEM, the silencer is divided into 5 substructures: 
inlet tube Ⅰ, expansion chamber Ⅱ, inter-connecting tube Ⅲ, expansion chamber Ⅳ and outlet 
tube Ⅴ. Figure 3 shows the flow velocity field inside the silencer for the case of flow Mach 
number M=0.3 at the inlet of the silencer. It may be seen that the flow field inside the silencer is 
three-dimensional.  

Figure 4 compares the transmission loss predictions for the silencer with different flow 
Mach numbers. It may be seen that, the effect of flow on the acoustic attenuation performance 
of the silencer is marginal at lower frequency, and is obvious at higher frequency. As the 
increase of flow Mach number, change of flow field inside the silencer will be more complex, 
and the gradients of velocity are getting bigger, therefore transmission loss of the silencer is 
changed. It is clear that the effect of three-dimensional flow on the acoustic attenuation 
characteristics of silencers may not be ignored. 

Figure 5 compares the computational time by DRBEM and the substructure DRBEM. It 
is clear that the substructure approach may save the computation time and increase the 
computational speed significantly.  

 

Figure 2. Schematic diagram of the double expansion chamber silencer with inter-connecting tubes 
(dimensions in mm). 

 

Figure 3. Distribution of flow field inside the double expansion silencer with inter-connecting tubes with 
M=0.3 at the inlet (units in m/s). 
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Figure 4. Transmission loss of double expansion chamber silencer with inter-connecting tubes. 
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Figure 5. Comparison of computation time spent in DRBEM and substructure DRBEM. 

6. CONCLUSIONS 

The substructure dual reciprocity boundary element method is developed to predict the acoustic 
attenuation characteristics of silencers with complex three-dimensional flow. Compared to the 
traditional boundary element method, the dual reciprocity boundary element method considers 
the second orders of Mach number in the governing equation, thus it is suitable for solving the 
sound propagation problems in the higher Mach number subsonic flow. Numerical results 
demonstrated that the effect of complex three-dimensional flow on the acoustic attenuation 
performance of silencers is not negligible. The substructure approach may reduce the 
computational works and then save the computation time of DRBEM. 
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