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Abstract 
 
A traditional composite plate impregnated with pre-strained shape memory alloy (SMA) 
fibers and subject to combined thermal and aerodynamic loads is investigated, to demonstrate 
the effectiveness of using the SMA fiber embeddings in improving the dynamic response of 
composite plates. The problem investigated is the nonlinear flutter limit-cycle and chaotic 
oscillations at elevated temperatures. A nonlinear finite element model based on the first-
order shear deformable plate theory is derived. von Karman strain displacement relations are 
utilized to account for geometric nonlinearity. Aerodynamic pressure is modeled using the 
quasi-steady first-order piston theory. The governing equations are obtained using the 
principle of virtual work based on thermal strain being a cumulative physical quantity. 
Newton-Raphson iteration is employed to obtain the dynamic response at each time step of 
the Newmark numerical integration scheme. A time domain method along with modal 
transformation is applied to numerically investigate periodic, non-periodic, and chaotic limit-
cycle oscillations. The results show that the amplitude of the limit-cycle oscillation is highly 
decreased by using SMA fiber embeddings.  

1. INTRODUCTION 

Panel flutter is a phenomenon that is usually accompanied by temperature elevation on the 
outer skin of high-speed air vehicles. Panel flutter is a self-excited oscillation of a plate or 
shell in supersonic flow on one side. Because of aerodynamic pressure forces on the panel, 
two Eigen modes of the structure merge and lead to this dynamic instability. A common 
remedy to the flutter problem is to stiffen those panels in danger of flutter, a method that 
usually introduces additional weight to the design.  

A vast amount of literature exists on panel flutter using different aerodynamic theories to 
model the aerodynamic pressure. Mei et al.  [1] presented a review on the various analytical 
methods and experimental results of supersonic and hypersonic panel flutter. Liaw  [2] studied 
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the geometrically nonlinear supersonic flutter of laminated composite thin plate structures 
subjected to thermal loads. Abdel-Motagaly et al.  [3] investigated the effect of arbitrary flow 
direction on the large amplitude supersonic flutter of composite panels. Dixon and Mei  [4] 
presented a nonlinear flutter analysis of thin composite panels using the finite element 
method. Xue and Mei  [5] presented an innovative finite element frequency domain solution 
for the nonlinear panel flutter at elevated temperatures.  

Shape memory alloys (SMAs) have a unique ability to completely recover large pre-
strains (up to 10%) when heated above certain characteristic temperature called the austenite 
finish temperature. The austenite start temperature for Nitinol can be any where between -50 
ºC and 170 ºC by varying the nickel content. During the shape recovery process, a large 
tensile recovery stress occurs if the SMA is restrained. Cross et al.  [6] measured the recovery 
stress of Nitinol at various pre-strain values and Young's modulus versus temperatures. Both 
the recovery stresses and Young's modules of SMA exhibit nonlinear temperature-dependent 
properties.  

Birman  [7] presented a  comprehensive review on the literature concerning SMA up to 
1997. Jia and Rogers  [8] formulated a mechanical model for composites with embedded shape 
memory alloy fibers using the micromechanical behavior of the highly nonlinear shape 
memory alloy, and adopting the classical lamination plate theory. Park et al.  [9] investigated 
the nonlinear vibration behavior of thermally buckled composite plates embedded with shape 
memory alloy fibers using the first order shear deformable plate theory. An incremental 
method was adopted to account for the temperature dependent material properties. Guo  [10] 
offered an efficient finite element method to predict the thermal buckling of thin shape 
memory alloy hybrid composite plates. Tawfik et al.  [11] proposed a novel concept in 
enhancing the thermal buckling and aeroelastic behavior of plates through embedding SMA 
fibers in it. Guo et. al.  [12] developed a finite element procedure to predict the nonlinear 
flutter response of thin Shape Memory Alloy hybrid composite plates at an arbitrary yawed 
angle and an elevated temperature.  

 In this paper, the nonlinear flutter limit-cycle oscillations of shape memory alloy hybrid 
composite plate panels under the combined effect of thermal and aerodynamic loading are 
investigated using a nonlinear finite element method. The nonlinear governing equations for a 
moderately thick rectangular plate are obtained using the first-order shear-deformable plate 
theory (FSDT), von Karman strain-displacement relations, and the principle of virtual work. 
The approach is based on the thermal strain being an integral quantity of the thermal 
expansion coefficient with respect to temperature, whereas the stress is evaluated with the 
instant elastic modulus at a certain temperature in the thermoelastic stress-strain relations 
 [10]. Therefore, the method does not need the use of many small temperature increments as in 
the incremental method  [11], and hence, it is suitable for any nonlinear temperature-
dependent material properties. Numerical results are provided to show the effect of the 
thermal field and pre-strained SMA fiber embeddings on the nonlinear flutter characteristics 
of a clamped traditional composite plate panel.  

2. FINITE ELEMENT FORMULATION 

The equations of motion with the consideration of large deflection and temperature dependent 
(TD) material properties are derived for a shape memory alloy hybrid composite plate panel 
subject to aerodynamic and thermal loadings. To account for temperature dependence of the 
material properties, cumulative thermal strain is adopted for the calculation of the thermal 
deflections and stresses in the plate.  

The nodal degrees of freedom vector of a rectangular plate element can be written as:  
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where wb is the transverse displacement of the middle plane, φx and φy are rotations of the 
transverse normal about the x and y axes respectively, u and v are the membrane 
displacements in the x and y directions respectively, {wφ} is the nodal rotation of the 
transverse normal vector, and {wm} is the nodal membrane displacement vector.  

The displacement-nodal displacement relation can be presented in terms of interpolation 
function matrices [Nw], [Nφx],  [Nφy],  [Nu] and [Nv] as: 
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The inplane strains and curvatures, based on von Karman's large deflection and first-order 
shear deformable plate theory, are given by  [14]: 
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Or in compact form 
 
{ } { } { } { }κεεε θ zlin ++=  (4) 
 
where εlin, εθ, and zκ are the membrane linear strain vector, the membrane nonlinear strain 
vector, and the bending strain vector, respectively.   

The transverse shear strain vector can be expressed as  [14] 
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The constitutive equations (6) and (7) of a traditional composite plate impregnated with 
shape memory alloy fibers are derived assuming that every layer of the composite matrix has 
an arbitrary orientation angle θ and principal material directions 1, 2 and 3. The SMA fiber is 
embedded in the 1-direction, and assumed uniformly distributed within each layer. 
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where [A], [A]s, [B] and [D] are the laminate membrane, shear, coupling and bending stiffness 
matrices, respectively. {N}, {M} and {R} are the resultant vectors of the inplane, moment and 
transverse shear forces. In addition, {NT} and {MT} are the inplane thermal load and thermal 
bending moment vectors, respectively, while {Nr} and {Mr} are the inplane SMA recovery 
load and SMA recovery bending moment vectors. Vs is the volume fraction of the SMA fibers 
T denotes the temperature rise, while a constant temperature distribution in the x, y and z 
directions are assumed. 

By using the principle of virtual work the governing equation of the nonlinear flutter 
limit-cycle oscillation of a plate embedded with SMA fibers can be derived as follows 
 

0int =−= extWWW δδδ  (8) 
The internal virtual work δWint is given as  [11] 
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where {w} is the nodal displacement vector of the element; β is a shear correction coefficient; 
[k], [kT] and [kr] are the linear, thermal and recovery stress stiffness matrices; [n1] and [n2] 
are the first- and second-order nonlinear stiffness matrices, respectively. In addition, {pT} and 
{pr} are the thermal load vector and the recovery stress load vector, respectively.   
On the other hand, the external virtual work δWext is given as  [9] 
 

{ } { } { } { } { } { }( )
{ } { } { } { }( ) { }

{ } [ ]{ } { } [ ]{ } { } [ ]{ }ba
T

bb
T

b
T

A a
T

by
T

yx
T

x

b
TTT

ext

wawwgwwmw

dA
PwI

wwvvuuI
W

         

2

λδδδ

δφδφφδφ

δδδ
δ ο

−−−=















++−

++−
= ∫

&&&

&&&&

&&&&&&

 (10) 

 
where ( ) ( )∫

−

=
2/

2/

2
2  ,1 ,

h

h

dzzII ρο
 with h denoting the plate thickness, Pa is the aerodynamic 

pressure, [m] is the mass matrix, [g] is the aerodynamic damping matrix, [aa] is the 
aerodynamic influence matrix, and λ is the non-dimensional dynamic pressure. 
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By substituting equations (9) and (10) into (8), the governing equations for a shape 
memory alloy hybrid composite plate under the combined action of aerodynamic and thermal 
loads, can be written as 
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Note that neglecting the in-plane and shear inertia terms will not bring significant error, 

because their natural frequencies are usually 2 to 3 orders of magnitude higher than those of 
bending  [10].  

Separating the membrane and transverse displacement equations in equation (11)  [13]: 
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Equation (12) can be numerically integrated in the structural nodal degrees of freedom. 

But this approach turns to be computationally expensive. Therefore, an alternative and 
effective solution procedure is to transform equation (12) into modal coordinates using 
reduced system aeroelastic modes by expressing the system bending displacement {WB} as a 
linear combination of a finite number of aeroelastic mode shapes as  [12]: 

{ } { } [ ]{ }qqW r

n

r
rB Φ=≈ ∑

=

φ
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 (13)  

where the rth  aeroelastic mode {φr} and the corresponding natural frequency ωr are obtained 
from the linear vibration of the system as: 
 

[ ]{ } [ ] [ ]( ){ }raBBrBr AKM φλφω ο+=2  (14)  

where λo is a certain dynamic pressure value selected to be smaller than the critical value, λcr.   
Based on the aeroelastic modes evaluated in equation (14), all the matrices in equation (12) 
are transformed into modal coordinates, using the concept of right and left eigenvectors  [15]. 
Accordingly, equation (12) can be written in modal coordinates as:  
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A modal structural damping matrix 2 [ζr fr] [MB] has been added to equation (15) to 
account for the structural damping effect on the system. The coefficient ζr is the modal 
damping ratio of the rth   mode, while fr is the rth   natural frequency in Hz. 

3. Numerical Results and Discussions 

The nonlinear flutter limit-cycle oscillation of a clamped laminated composite plate panel 
with and without SMA is performed using the finite element method. A uniform 6 x 6 finite 
element mesh of nine-noded rectangular elements is found adequate. The dimensions of the 
plate are 0.381 x 0.305 x 0.0013m and the stacking sequence is [0/-45/45/90]s. Table (1) 
presents the material properties of the composite matrix and SMA fibers  [10]. Uniform 
temperature change is applied to the plate, and the reference temperature is assumed 21ºC. 

 

Table 1 Material properties of composite matrix and SMA fiber  [10] 
 

Nitinol Graphite-epoxy 
See ref.  [10] for Young's modulus 
and recovery stresses. 

E1    155 (1-6.35x10-4 ∆T) GPa 
E2    8.07 (1-7.69x10-4 ∆T) GPa 

G  25.6 GPa G12  4.55(1-1.09x10-3∆T)GPa 
ρ   6450 Kg/m3 ρ       1550 Kg/m3 
ν   0.3 ν        0.22 
α   10.26 x 10-6 / ºC α1    -0.07x10-6(1-0.69x10-3∆T) / ºC 

α2    30.6x10-6(1+0.28x10-4∆T) / ºC 
 
Limit-cycle oscillation (LCO) can be categorized into four types: nearly harmonic LCO, 

periodic LCO, non-periodic oscillation, and chaotic oscillation. A traditional clamped 
composite plate and a SMAHC plate with 5% volume fraction and 3% pre-strain are studied 
and compared. The response time histories at the maximum deflection are obtained for 
various combinations of the temperature rise ∆T and λ. A proportional damping ratio is used 
with a fundamental modal damping coefficient ζ1 equal to 0.02. The aerodynamic damping 
coefficient Ca is set to 0.1. Newmark implicit numerical integration scheme  [16] is utilized to 
solve the system differential equations. Six aeroelastic modes were found adequate. 

Figure (1) shows the LCO of both plates at room temperature and λ = 650. It is seen that 
the SMAHC plate vibrates with amplitude equal to 0.8, which is higher than the 0.7 vibration 
amplitude of the composite plate, because the SMAHC plate has slightly higher weight than 
the traditional composite plate, and the recovery stresses is not activated yet at room 
temperature. Figure (2) shows the LCO of both plates at ∆T= 50 ºC and λ = 500. As 
temperature rises above room temperature, the recovery stress starts to build up resulting in a 
stiffer plate compared to the traditional composite plate. It is seen that the SMAHC plate 
vibrates with nearly harmonic oscillation with amplitude equal to 0.7, which is much lower 
than the 1.75 vibration amplitude of the composite plate periodic oscillation. At ∆T= 110 ºC 
and λ = 280, the SMAHC plate periodically oscillates with amplitude equal to 1.3 while the 
composite plate experiences chaotic oscillation as shown in figure (3). Therefore, it is 
concluded that SMA fiber embeddings can effectively decrease or even suppress limit-cycle 
oscillation amplitudes at higher temperatures, resulting in a larger flat and dynamically stable 
region.               
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Figure 1. Comparison between LCO of composite and SMAHC plates at λ = 650 and ∆T = 0 ºC 

 

 
Figure 2. Comparison between LCO of composite and SMAHC plates at λ = 500 and ∆T = 50 ºC 

 
Figure 3. Comparison between LCO of composite and SMAHC plates at λ = 280 and ∆T = 110 ºC 
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4. CONCLUSIONS 

In this work, a traditional composite plate impregnated with pre-strained shape memory alloy 
fibers and subject to combined thermal and aerodynamic loads, is investigated, to demonstrate 
the effectiveness of using SMA fiber embeddings in improving the flutter response of 
composite plates. A new nonlinear finite element model for moderately thick plates based on 
the first-order shear deformable plate theory is presented using the cumulative thermal strain 
method adopted by Guo  [12]. The governing equations are obtained using the principle of 
virtual work. The nonlinear temperature dependence of material properties for the composite 
matrix and SMA fibers is considered in the formulation. The time domain method is applied 
to numerically investigate limit-cycle oscillations. The finite element modal formulation and 
solution procedures are developed for the time domain method. Results showed that SMA 
fiber embeddings can be very useful in flutter control through decreasing the flutter limit-
cycle amplitude.  
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