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Abstract 
 
In order to deal with the viscoelasticity of constituents in phononic crystals, an algorithm based 
on the finite-difference-time-domain method and the numerical approximation of fractional 
derivative are proposed. It is validated with transfer matrix method which takes the viscosity 
into account by complex modulus with frequency dependence. Although the viscoelasticity of 
host material does not influence the frequency position of gaps, a wide transmission gap is 
found even for very weak viscosity, which gives new idea to design phononic crystals with 
wide transmission gaps. 

1. INTRODUCTION 

The propagation of elastic waves in periodic heterogeneous materials known as phononic 
crystals (PCs) has received much attention in recent years. Because of the periodicity of 
elasticity in PCs, there exist frequency band gaps within which wave propagation is forbidden, 
giving rise of prospective applications such as elastic/acoustic filters, noise/ vibration isolations, 
as well as improvements in design of transducers. 

Several theoretical methods have been developed for investigating the frequency gaps of 
PCs, which include the plane wave expansion (PWE) method [1], the multiple-scattering theory 
(MST) method [2], and the Finite-difference-time-domain (FDTD) method [3-10]. The PWE 
method has the convergence problem when dealing with systems of either very high or very low 
filling ratios, or of large elastic mismatch, especially for the systems with mixing solid and fluid 
components. The MST and FDTD methods overcome those difficulties. But the approach based 
on MST is effective only for the systems containing spherical or cylindrical scatters. The FDTD 
approaches are suitable for nonspherical or complicated scatters. The advantages of adopting 
the FDTD methods include less calculation time than PWE, more material-selecting flexibility, 
and inclusion shape variation. But it requires enough discretization of time and spatial domain 
to guarantee its convergence and accuracy, therefore is generally rather time consuming. 
Fortunately computers become faster and cheaper enough to counteract FDTD’s disadvantage. 
Moreover, FDTD methods are very suitable for parallelism computation realized with massage 
passing interface (MPI) on a personal computer cluster system [8], which makes them more 
applicable and efficient. Usually, FDTD methods are used to deal with the transmission 
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problem of finite size phononic crystals, such as two-dimensional (2D) PCs consisting of liquid 
cylinders in aluminum host [3], or solid (hollow) cylinders in air [6], or steel cylinders in epoxy 
matrix [5,8], and three-dimensional (3D) PCs consisting of lead spheres forming FCC lattice in 
epoxy [4,7]. Tanaka [9] proposed an approach to calculate the band structures of 3D PCs using 
FDTD method. Cao [10] improved Tanaka’s approach by introducing Bloch initial conditions 
and Bloch boundary conditions and dealt with 2D PCs.  

In all of above mentioned works, the viscoelasticity of constituents like oil, air, 
polyethylene or epoxy are not taken into account. In fact most of the research works on PCs in 
open literature did not take the viscoelasticity of constituents into account due to the lack of 
available method. However, in an experiment, finite-size slabs are dealt with and the measured 
quantities are usually the transmission and reflection coefficients. Apart from that, realistic 
materials, especially polymers and liquids, are dispersive and dissipative. In order to obtain 
wide gaps in low frequencies, materials with small elastic modulus such as rubber and polymer 
are often used as one constituent in PCs. I.E. Psarobas [11] had proposed a method for 3D PCs 
based on multiple scattering theory and Kelvin-Voigt viscoelastic model, which suffers the 
inherited disadvantage of scatters shape limitation. To our best knowledge, there is no 
algorithm reported earlier accounting for viscoelasticity in 2D PCs. 

In this paper, we propose an algorithm for calculating wave propagation in 2D PCs with 
viscoelastic host based on FDTD approach. The viscoelasticity is accounted for by means of the 
fractional derivative model (known as RTG model) which is chosen for its accuracy in wide 
frequency ranges and fewness of parameters. The method for calculating the transmission 
coefficients of finite slab of 2D PCs is formulized by integrating the RTG model into FDTD 
method, which is called RTG-FDTD method in this paper. The proposed method can be 
degenerated to traditional FDTD method by setting the parameters of RTG model to zeros. In 
section 2, the RTG model of viscoelastic materials and the elastic wave equations with RTG 
model of 2D PCs are described in detail. Then the proposed RTG-FDTD method is outlined in 
section 3. In section 4, several examples of solid/solid PCs are numerically simulated to 
illustrate the viscoelastic effects on wave transmission and the results are discussed in detail. 
Section 5 summarizes the discussions and the whole paper as conclusions.  

2. FRACTIONAL DRIVATIVE MODEL OF VISCOELASTIC MATERIALS 

Viscoelastic materials are largely used to provide damping to structures or to absorb underwater 
sound waves. In the past the rheological model for viscoelastic materials was based on the 
classical concept of derivatives with integer order, which led to constitutive equations with too 
many parameters to be identified. Over the last two decades, the fractional derivative has gained 
the reputation of an extremely adequate tool to model viscoelastic materials and resulted in the 
development of the so-called fractional derivative models [12].  

2.1 The constitutive equation for viscoelastic materials in fractional derivatives 

The generalized one-dimensional constitutive equation in fractional derivatives is 
  

( ) ( ) ( ) ( )0
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where ( )tσ  and ( )tε  stand for strain and stress respectively. mb , 0E , nE are constants related 
to the concerned material. nα  and mβ  are fractional orders of the derivatives usually with the 

values between 0 and 1. The exact definition of fractional derivatives ( )D f tα ⎡ ⎤⎣ ⎦  and its 
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numerical appropriation will be given in next section.  
Lots of research works indicate that equation (1) with neither M or N  more than 1 is 

accurate enough to represent the dynamic behavior of viscoelastic materials. Therefore there 
are five parameters when , 1M N =  which is called five-parameter fractional derivative models. 
The four-parameter and three-parameter fractional derivative models are widely used in open 
literature. In this paper we use Kelvin-Voigt type fractional derivative model with only three 
parameters. The constitutive equation reads  
 

( ) ( ) ( )0 0t E t E D tασ ε η ε= + ⎡ ⎤⎣ ⎦                                                     (2) 
 

The concept of the complex modulus of elasticity is widely used in acoustics to 
characterize the dynamic elastic and damping properties of solid materials in the linearity range. 
By applying Fourier transformation to equation (2), one readily obtains (3) which relate the 
complex modulus to the fractional derivative model of Kelvin-Voigt type. 
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The constitutive equations of the Kelvin-Voigt fractional derivative model for three 

dimensional viscoelastic materials are 
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Where ( )ijS t  and ( )ije t  are the deviatoric tensor of stress and strain respectively. ( )kk tσ  and 

( )kk tε  are the principal stress and strain. K  and G  are the bulk modulus and shear modulus.  

2.2 Elastic wave equations of 2D PCs with viscoelasticity in fractional derivatives 

The equations governing the motion of displacement ( ),iu tr  in inhomogeneous solids are 
given by 
 

( ) ( ) ( ), ,i j iju t tρ σ⎡ ⎤= ∂ ⎣ ⎦r r r��                                                       (5) 
 

( ) ( ) ( ){ }1, , ,
2ij j i i jt u t u tε ⎡ ⎤= ∂ + ∂⎡ ⎤⎣ ⎦ ⎣ ⎦r r r                                            (6) 

 
where ( ), ,x y z=r  and the summation convention over repeated indices is assumed.  

In the 2D PC case, cylindrical scatters are paralleled to z  axis and infinite long. The 
system has translational symmetry along z  axis thus the material parameters do not depend on  
z . By assuming wave propagation in the -x y  plane, the wave equation can split into two 
independent equations [3]. We study the XY mode in this paper which involves both 
longitudinal and transverse waves. Substitute equations (6) into (4), and rewrite equations (4) 
and (5) in components, we obtain the elastic wave equations of 2D PCs with viscoelasticity in 
fractional derivates, which reads as (7). The displacement and stress components like 

( ), ,xu x y t  are shortened as xu  for simplicity. ρ is the mass density of constituents, which 
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varies with the periodicity. η  is the loss factor of the viscoelastic material. If 0η = , equations 
(7) degenerate to the classical wave equations without viscoelasticity. 
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3. RTG-FDTD METHOD FOR 2D PCS WITH VISCOELASTICITY 

In order to investigate the transmission property of 2D PCs with viscoelasticity, it is necessary 
to solve the wave equations (7). Since numerical approximation of fractional derivatives 
performed in time domain is more generally applicable than the Laplace transform solution [13], 
the equations (7) are integrated by means of a finite-difference time-domain scheme which is 
very convenient to be integrated with the numerical approximation of fractional derivatives. 

3.1 Caputo fractional derivative 

The Caputo fractional derivative is defined as equation (8) [14], where ( )Γ i  is gamma function. 
( ) ( )nf t  is the classical nth order derivative. α⎡ ⎤⎢ ⎥  is the ceiling function giving the smallest 

integer greater than or equal to α . ( )f t  must be continuous and α⎡ ⎤⎢ ⎥  times differentiable in t . 
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∫� \                                        (8) 

 
The Caputo differential operator is a linear operator. If ( ) ( )f tα⎡ ⎤⎢ ⎥  exists and is continuous, 

and if ( ) ( )0 0nf = , [ ]1, 2, ,n α= " , the Caputo fractional derivative is equivalent to the 
Riemann- Liouville definition which is more popular in modeling viscoelastic materials. Such 
conditions are satisfied in the FDTD scheme, which will be seen later. One of the advantages of 
Caputo derivatives is that the initial conditions to produce a unique solution of fractional 
differential equations are akin to those of classical ODEs.  

3.2 Numerical approximation of Caputo fractional derivatives 

Unlike ordinary derivatives, which are point functionals, fractional derivatives are hereditary 
functionals possessing a total memory of past states. Since it is a fading memory effect, only the 
nearest memory with finite duration is used in practice. A numerical algorithm for computing 
Caputo derivatives has been derived by Diethelm [14].  
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The authors have compared several numerical algorithms of fractional derivatives. 

( )sin sin
2

D t tα α απω ω ω⎛ ⎞= +⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠
 is used as an benchmark. Figure 1 present the errors of 

different numerical approximations using the latest three periods as the history data. One can 
readily finds that the algorithm mentioned above gives the best approximation, which is the 
reason that Caputo fractional derivatives are chosen.  
 

 
Figure 1. Comparison of several numerical algorithms for calculating fractional derivatives. Algorithms 
L1 and G1 are from [13]. RLI is the algorithm 2 in [14]. Zhang is referred to [15].  

3.3 Finite-difference-time-domain scheme 

In order to numerically solve the equations (7), we discretize them in both the spatial and time 
domains, set appropriate boundary conditions, and explicitly calculate the evolutions of xu and 

yu  in the time domain. More specifically, real space is discretized into a rectangular grid where 
the variables are defined. xu  and yu , xxτ / yyτ  and xyτ are spatially interlaced by half a grid cell. 
The elastic wave equations are approximated by center differences in both space and time. For 
example, the first and last equation in (7) will be discretized as (10a) and (10b).  
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The computational region contains a slab of the composite medium sandwiched in 
homogenous host material. Mur’s first order absorbing boundary conditions are used at the 
boundaries of the computational region perpendicular to the wave propagation direction. At the 
other two boundaries, periodic boundary conditions are used. The modulated Gaussian pulse is 
launched in the homogeneous region and propagates along the y axis through the composite. 
The components of the displacement vector as a function of time are collected on the other side. 
The time series collected are converted into the frequency domain using the fast Fourier 
transform. By normalizing these results relative to the incident wave, one can find the 
frequency response of the PC slab. 

4. NUMERICAL EXAMPLES AND DISCUSSIONS 

4.1 One dimensional PCs 

Since there is no example of 2D PCs available in literature while counting on the damping and 
dispersion, a 1D PC is considered for validation because the well known transfer matrix (TM) 
method for 1D PCs can deal with the viscoelasticity on the basis of complex modulus with 
frequency dependence.  

The 1D PC example is composed of Aluminum and epoxy layered alternatively. Each 
layer is 10mm thick which results in the lattice constant of 20mm. The elastic parameters used 
in the calculation are listed in table 1, and the fractional order is arbitrarily fixed to 0.5. The 
complex modulus with frequency dependence is determined with equation (3).  
 

Table 1. Material parameters used in examples 

 Aluminum Epoxy 

Mass densityρ (kg/m3) 2730 1180 
Lame constant λ (Pa) 6.89e10 4.43e9 
Lame constant μ (Pa) 2.87e10 1.59e9 
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Figure 2. Transmission of 1D PC composed of aluminum and epoxy layered alternatively. Blue lines are 
calculated with 2D RTG-FDTD and red lines with TM method. =0.0001η  for solid lines and 

=0.0005η  for dotted lines. 
 

The calculated transmission property for four periods with both TM and RTG-FDTD 
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methods are presented in figure 2 with red and blue lines respectively. Two levels of viscosity 
are considered which are indicated with dotted lines for low viscosity and solid lines for 
medium viscosity. For both cases, the outlines of the transmissions calculated with TM and 
RTG-FDTD method are in very good agreement. In quantity, they reasonably agree to each 
other in most frequencies except some peaks and very high frequencies. The discrepancy in 
high frequency is understandable because the convergency of FDTD scheme becomes poor in 
higher frequency [3, 4] with given temporal and spatial grids, while the TM method does not 
suffer such a problem. But the reason of discrepancies about the peaks in low frequencies is still 
not clear for the authors. Comparing the transmissions with different level of viscosity, one can 
find larger attenuation in high frequencies for higher viscosity, which is reasonable and as 
expected. 

4.2 Two dimensional PCs 

The second example is a 2D PC consisting of aluminium cylinder embedded in epoxy matrix 
forming square lattice. The lattice constant is 20mm and the radius of the scatter is 8mm. The 
band structure is calculated with PWE method and illustrated in figure 3 on left panel. The 
longitudinal and transverse wave modes are indicated with solid and dotted lines respectively. 
As for the longitudinal waves, there are three gaps in ΓΧ direction below 150 kHz. The 
longitudinal wave transmission property with and without viscoelasticity are calculated with 
the proposed RTG-FDTD method, which is presented in the right panel of figure 3. The 
frequency ranges of the three gaps in both panels are in very good agreements, which validate 
our FDTD scheme in 2D cases. Comparing the transmission with to without viscosity, one 
readily sees the viscosity slightly widen each individual gap to higher frequency because of its 
dispersive effects. More important, the transmission peaks between gaps are largely attenuated, 
which results in a wide combined transmission gap. The attenuation is related to the wave 
modes. Flat bands will be largely attenuated when the host material is dissipative, which 
implied a new idea to design PCs with wide transmission gaps.  
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Figure 3. Band structure (left) and transmission (right) of 2D PC composed of aluminum cylinders 
squarely embedded in epoxy host calculated with 2D RTG-FDTD method. Solid line (blue) is for 

=0.0001η  and dotted line for =0η .  
 

Although the examples are limited in the same constituent materials, the proposed 
RTG-FDTD method is generally applicable for even larger mismatch of elastic parameters. 
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More examples will be put in the presentation on the conference because of limitations on the 
length of papers. 

5. CONCLUSIONS 

An algorithm (RTG-FDTD) for calculating the transmission property of 2D PCs with 
viscoelastic constituents is proposed based on the FDTD scheme and the fractional derivatives. 
The transmission of a 1D PC is calculated with the transfer matrix method which takes the 
viscosity into account by complex modulus with frequency dependence for validation, which 
shows reasonable agreement to the results of the RTG-FDTD method and justifies the proposed 
algorithm. The effects of viscoelasticity of host material of 2D PC on its transmission property 
are investigated with the proposed method. It is noted that the dispersion of host material 
widens the gaps. Moreover, the damping effects evidently attenuate the flat bands between gaps 
and result in a wide transmission gap, which implied a new idea to design PCs with wide 
transmission gaps. 
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