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Abstract 
 
In this paper, the local linear models of a magneto-rheological (MR) damper are obtained 
based on the Takagi-Sugeno (T-S) fuzzy modelling approach. In these local linear models, the 
output force of the MR damper is expressed as the linear summation of the state variables 
(relative displacement and relative velocity) and input voltage. To obtain these local linear 
models with high accuracy, the genetic algorithm (GA) with a new encoding method is 
applied to search for the optimal model parameters. The proposed hybrid intelligence 
technique can evolve the fuzzy rule structure (number of rules and selection of rules) and the 
input structure (number of premise inputs and selection of premise inputs) simultaneously so 
that the obtained linear models have the simplest structures without decreasing the modelling 
accuracy. To validate the proposed approach, the modelling errors between the MR damper 
output and the corresponding linear model output are compared for the given number of rules 
case and for the automatically selected rules case with using three different selection 
approaches for the premise input variables. It is confirmed by the validation results that the 
proposed hybrid intelligence technique can find the optimal linear model for the MR damper. 

1. INTRODUCTION 

Magneto-rheological (MR) dampers have recently attracted significant research and 
application interests in vibration reduction of buildings, bridges, and vehicle suspensions etc.  
The MR damper is a semiactive control device that employs a special type of controllable 
fluids, the magneto-rheological fluids, which typically consist of micron-sized, magnetically 
polarisable particles dispersed in a carrier medium such as mineral or silicone oil. When a 
magnetic field is applied to the fluid, the particles are lined up in chains so that the fluid 
becomes semisolid within a few milliseconds, exhibiting a plastic behaviour. However, the 
practical use of MR dampers for control is still hindered by their inherently hysteretic and 
highly nonlinear dynamics. This makes the modelling of MR dampers more important for 
their applications. In order to characterise the performance of MR dampers, several models, 
which include the phenomenological model, neural network model, nonlinear black-box 
model, and viscoelastic-plastic model etc., have been proposed. Although these models have 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

shown different advantages in describing the dynamic behaviours of MR dampers, they are all 
described as nonlinear models. Thus, linear control theory cannot be directly applied to design 
the optimal controllers for the real-world applications of MR dampers. To deal with this 
problem, in this paper, the local linear models of an MR damper are obtained based on the 
Takagi-Sugeno (T-S) fuzzy modelling approach. 
         Nowadays, the T-S fuzzy modeling technique is becoming powerful engineering tools 
for modelling and control of complex dynamic systems. The T-S fuzzy model is a system 
described by fuzzy if-then rules which can give local linear representation of the nonlinear 
system. For the reason that it employs linear model in the consequent part, conventional linear 
system theory can be applied for the system analysis and synthesis easily. The methods for 
learning T-S fuzzy models from data are based on the idea of consecutive structure and 
parameter identification [1]. To accommodate new input data, adaptive online learning of T-S 
fuzzy model has been developed [2]. On the other hand, design of a fuzzy model can be 
formulated as a search problem in multidimensional space where each point represents a 
possible fuzzy model with different rule structure, membership functions (MFs), and related 
parameters. Due to the search capability, evolutionary algorithms (EAs), such as genetic 
algorithms (GAs) and evolution strategies (ESs), have been utilised greatly in evolutionary 
fuzzy modelling. In some of EA-based fuzzy models, only parameters of fuzzy models are 
optimised using EAs while the structure itself is fixed [3]. Since parameters and rule structure 
of fuzzy models are codependent, they should be designed or evolved simultaneously. Thus, 
methodologies that try to change the rule structure by encoding all the information into the 
chromosome have been developed [4]. In this paper, the GA-based fuzzy modelling algorithm 
is developed. Especially, an encoding scheme that consists of three kinds of genes in one 
chromosome, which allows simultaneous optimisation of parameters of antecedent MFs, rule 
structure (number of rules and selection of rules), and input structure (number of premise 
inputs and selection of premise inputs) is proposed. For simplicity in the specified application, 
the fitness function only considers one evaluation criterion (accuracy) in terms of the sum of 
squared error (SSE), and the other aspect, compactness (number of rules) is  constrained with 
the maximal number.      
          To demonstrate the effectiveness of the developed evolving T-S model, the presented 
model is applied to approximate the dynamic behaviour of an MR damper in the form of the 
linear T-S fuzzy model. The use of the T-S model to emulate the dynamic behaviour of the 
MR damper is validated by numerical values.    

2. PHENOMENOLOGICAL MODEL OF MR DAMPER 

A phenomenological model has been proposed by Spencer et al [5] to portray the behaviour 
of a prototype MR damper. This model is governed by the following seven simultaneous 
equations: 
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where F  is the force generated by the MR damper; x  is the displacement of the damper; y  is 
an internal pseudo-displacement of the MR damper; u  is the output of a first-order filter; v  is 
the command voltage sent to the current driver. z  is the evolutionary variable. In this model,  

1k  is the accumulator stiffness; 0c  and 1c  are the viscous damping coefficients observed at 
large and low velocities, respectively; 0k  is the gain to control the stiffness at large velocities, 
and 0x  is the initial displacement of spring 1k  associated with the nominal damper force due 
to the accumulator; γ , β , A  are hysteresis parameters for the yield element, and α  is the 
evolutionary coefficient. ac0 , bc0 , ac1 , bc1 , aα , bα , and η  are coefficients. In this model, there 
are a total of 14 model parameters to characterise the MR damper. The obtained values for the 
14 parameters can be determined by fitting the model to the experimental data obtained in the 
experiments. As an example, a set of parameter values which was obtained by Spencer at al 
was given in paper [5]. And, it was also used in this paper for the numerical simulation. 

3. LINEAR MODELLING OF MR DAMPER 

3.1 Linear Model Represented by Takagi-Sugeno Fuzzy Model 

In this paper, the output force of MR damper is ideally expressed by the following linear 
model: 
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where F , x , v are same with the variables explained in Section 2. x& is the derivative of x and 
represents the velocity of the damper. i

jA  is a fuzzy set on the jth premise defined by the MF , 
},,,{ 21 nj xxxx K=  is the premise variable. i

jc  and i
jb  are centres and widths of membership 

function, respectively. ip1 , ip2 , ip3  are linear parameters. r is number of rules, n is number of 
premise variables. r  and n  are determined by genetic algorithms. 
         The T-S fuzzy model is a system described by fuzzy IF-THEN rules which can give 
local linear representation of the nonlinear system by decomposing the whole input space into 
several partial fuzzy spaces and representing each output space with a linear equation. Such a 
model is capable of approximating a wide class of nonlinear systems. For the reason that it 
employs linear model in the consequent part, conventional linear system theory can be applied 
for the system analysis and synthesis accordingly. And hence, the T-S fuzzy models are 
becoming powerful engineering tools for modelling and control of complex dynamic systems. 
To obtain the linear expression (2) for an MR damper, we need using the fuzzy modelling 
technique as following: 
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IF 1x  is 1
1A and 2x  is 1

2A  and … and nx  is 1
nA , THEN vpxpxpf 1

3
1
2

1
1

1 ++= & , 
 …                                                                                                                                            (5) 
IF 1x  is rA1 and 2x  is rA2  and … and nx  is r

nA , THEN vpxpxpf rrrr
321 ++= & , 

  
         Most of the studies on T-S fuzzy models consider that all inputs used in the premises are 
used in the consequents. However, in general, the premises of the rules describe different 
operating regions which depend on some antecedent inputs, while the consequents are linear 
(or affine) descriptions of the behaviour of the system in each of the operating regions that do 
not necessarily depend on the same inputs. So, in many applications, the approximation of a 
nonlinear system by local linear models requires many antecedent inputs to characterise the 
regions where the dynamics of the system can be considered as linear. On the contrary, inside 
each operating region, a simple linear autoregressive with exogenous input (ARX) model can 
approximate very well the local dynamical behaviour of the system. Hence, we consider that 
the antecedent vector },,,{ 21 nj xxxx K=  is not necessary the same as the vector { x , x& , v } 
which was used in the consequent affine models.          . 

3.2 Encoding Scheme 

Using GAs to design a T-S fuzzy model, one of the first important things is to encode the T-S 
fuzzy model into the chromosome with an efficient method. When the rule structure (number 
of rules and selection of rules), the input structure (number of inputs and selection of inputs), 
and the parameters of MFs associated are specified, the T-S fuzzy model will be specified. In 
order to realise the automatic selection of rules and inputs, a new encoding scheme is 
presented. The proposed encoding scheme uses a chromosome that consists three parts as 
shown in Figure 1. The first part deals with the rule selection and the optimisation of number 
of rules, the second part deals with the input selection and the optimisation of number of 
inputs, and the third part deals with the optimisation of parameters of MFs. Here, we adopt 
the binary-coded GAs and every gene in the chromosome is represented by a binary value `1' 
or `0'.  
          In the first and second parts, each gene represents one rule or one input. The position of 
one gene in the first part will denote the corresponding sequence of one rule in all the rule 
sets, and the position of one gene in the second part denotes the corresponding sequence of 
one input in all the input sets. The selection of rules or inputs is made by checking the binary 
value of the gene. If a specified gene in the first part is zero, then the corresponding rule is not 
valid and vice versa. If a specified gene in the second part is one, then the corresponding input 
is valid and vice versa. So, the information of genes in the first and second parts represents 
whether a certain rule or input is used or not for the current rule structure or input structure of 
an individual. 
 

 
Figure 1. Encoding scheme for individual chromosome 
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3.3 Evolving T-S Fuzzy Model 

Using the standard GAs together with the presented encoding scheme, the evolving T-S fuzzy 
model can be obtained by the following steps:  
Step 1: Encode all the model parameters into chromosome using the presented encoding 
scheme.  
Step 2: Generate initial population.  
Step 3: Calculate objective functions. Firstly, after the centres, widths, and the numbers of 
rules and inputs are generated, the weights are calculated using the pseudo-inverse algorithm. 
Secondly, calculate the objective function. The SSE for the training data or the testing data is 
regarded as the objective function of each chromosome. If necessary, the evolved number of 
rules and number of inputs can be added into the objective function to obtain the reasonable 
sizes of the rules and inputs. Finally, record every objective function that corresponds to every 
set of parameters to a suitable fitness value according to the rank-based fitness assignment 
approach. 
Step 4: Apply evolutionary operators: selection, crossover, and mutation. 
Step 5: Use the elitist reinsertion approach. 
Step 6: Evaluate the fitness of each individual. 
Steps 3 to 6 correspond to one generation. The evolution process will repeat for a fixed 
number generations or will end when the search process converges with a given accuracy. The 
best chromosome will be used to determine the optimal numbers of rules and inputs, centres 
and widths. 

4. MODELLING OF MR DAMPER 

4.1 Data Collection and Pre-processing 

In this paper, data for training and testing of the T-S model are obtained from the 
phenomenological model of the MR damper proposed by Spencer et al in [5]. In order to 
obtain a high quality trained model, a high quality training and testing data must be obtained 
first. To make the identified model fully represent the underlying system, the training samples 
should cover all possible combinations and ranges of input variation in which the MR damper 
will operate. This is to ensure that the evolving T-S models trained using these samples can 
accurately represent the behaviour of the MR damper to be simulated. Normally, the limits of 
these input signals are dependent upon the characteristic and specific application of the MR 
damper. Advanced knowledge of the input signals enables the creation of more useful training 
data. Given this idea, note that the maximum operational voltage of the MR damper is 2.25 V, 
which is defined as the saturation voltage of the damper and is obtained experimentally, and 
the situation of zero voltage will also be common during operation of the MR damper. 
Therefore, ranges of the voltage signal and its frequency are set as 0-2.25 V and 0-1 Hz, 
respectively, in this study. Likewise, the displacement of the MR damper ranges from ±2 cm 
and its frequency ranges from approximately 0-5 Hz in this study. Signals of displacement 
and voltage used for training are produced using band-limited Gaussian white noise and some 
specified filters are used to obtain such random signals in indicated frequency ranges. 
Velocity signal is obtained by differentiating the displacement signal. Figure 2 shows the 
histories of displacement, voltage, and damper force. Out of these data, the first half data sets 
are used as the training data while the remaining data sets are used as the testing data for the 
T-S model.  
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Figure 2. Training and testing data. 

 

4.2 Forward Model 

With the training and testing data established, the developed evolving T-S model is used to 
create a mapping model that emulates the “forward” dynamic behaviour of the MR damper. 
This model shows that the force generated by the MR damper depends on the command 
voltage, the displacement of the MR damper at the location where the damper is attached and 
its velocity. The SSE results between the true output and the model prediction and the 
obtained numbers of rules and inputs are calculated and listed in Tables 1 and 2 for 50 runs, 
where “Method 1” uses the same premise inputs as the consequent variables, and the premise 
inputs are given; “Method 2” uses the given  premise inputs and given consequent variables 
but the premise inputs are different from the consequent variables; “Method 3” uses the given 
consequent variables and automatically selects the premise inputs using the presented 
algorithm. Table 1 shows the results for different methods with given number of rules, and 
Table 2 shows the results for different methods with automatically selected number of rules. It 
can be seen from Table 1 that for every given number of rules, “Method 3” can always give 
the best results among three different methods, and “Method 2” can give the results better 
than “Method 1”. For three methods, when the number of rules is given as 30, the obtained 
results are relatively better than the other given numbers of rules for both the training and the 
testing data. It can be seen from Table 2 that with the automatically selected number of rules 
and premise inputs, “Method 3” can give reasonable good results compared to the other two 
methods. Figure 3 shows the predicted force of the MR damper using the well trained 
evolving T-S model for the data sets. It can be seen that predicted force matches with the 
target force.    
 

Table 1. Modelling results in SSE using different methods with given number of rules 
 

 Method 1 Method 2 Method 3 
 Training Testing Training Testing Training Testing 

No Min Ave Min Ave Min Ave Min Ave Min Ave Min Ave
10 115 125 96 105 87 119 76 93 74 93 69 91 
30 111 121 124 159 95 108 91 109 76 89 69 92 
 50 96 106 342 514 84 96 108 138 70 104 77 136 
70 78 85 1713 2682 78 86 153 217 68 188 93 265 
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Table 2. Modelling results in SSE using different methods with automatically selected number of rules 
 

 Method 1 Method 2 Method 3 
 Min/Max Ave/Best Min/Max Ave/Best Min/Max Ave/Best

Training 113 138 89 127 79 109 
Testing 102 122 80 110 79 109 

Rule Number 9/19 13/18 12/25 18/20 4/33 17/32 
Premise Number 3/3 3/3 6/6 6/6 1/8 4/7 
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Figure 3. Training and testing result. 

 
 

4.3 Model validation 

To further validate the effectiveness the T-S fuzzy model in modelling the dynamic behaviour 
of an MR damper, two more sets of validation data, where validation data I uses random 
displacement and random voltage with different frequency characteristics, validation data II 
uses sinusoidal displacement and sinusoidal voltage, are generated. Figure 4 shows the 
predicted force of the MR damper for validation data I. Figure 5 shows the predicted force of 
the MR damper using the T-S fuzzy model for validation data II. It can be seen that the 
predicted forces match the targeted forces. It is noticed from the validation results that the T-S 
fuzzy model can emulate the dynamic behaviour of an MR damper with acceptance even 
when the input data are different from the training data in both frequency and amplitude.  

5. CONCLUSIONS 

In this paper, a local linear model based on T-S fuzzy model is developed to emulate the 
dynamic behaviour of an MR damper. The rule structure, input structure, and the MF 
parameters are simultaneously evolved by GA with the objective to reduce the SSE between 
the predicted out and the true output. It is certified by the testing and validation data that the 
presented evolutionary T-S fuzzy model can emulate the dynamic behaviour of the MR 
damper with simple linear representation. 
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Figure 4. Validation result for validation data I. 
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Figure 5. Validation result for validation data II.  
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