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Abstract 
 
The lower registers of the marimba, vibraphone and xylophone consist of percussion bars that 
have the lower three bending modes tuned.  Tuning is achieved by removing material from 
the underside of the beam.  Accurate prediction of the geometry of this undercut would be 
necessary for automated tuning.  This paper models the beam free vibrations and accurately 
predicts the non-unique shape of the undercut that results in the simultaneous tuning of the 
three frequencies. 

Accurate natural bending frequencies are modelled using receptance sub-structuring and 
Timoshenko beam receptances.  Allowance for the frequency dependency of the elastic 
modulus of wood is made.  Search algorithms are implemented to locate the geometric shape 
of the undercut curve that satisfies the multi-mode frequency requirements.  The sensitivity of 
the frequencies to dimensional variations is reported. 

Manufacture of aluminium and wooden bars show that the predictions are very accurate 
and suitable for the basis of automated manufacture. 

1. INTRODUCTION 

The marimba, xylophone and vibraphone are each examples of idiophones where the primary 
vibrating element is a free-free bar excited by being struck with a mallet.  As prismatic bars 
do not have transverse bending frequencies that form a harmonic series, these instruments 
utilise bars that are non-prismatic, being shaped in such a way as to bring the first one or two 
overtones into the desired frequency relationship with the fundamental.  The usual approach is 
to remove an arch of material from the underside of the bar, symmetrically about the centre of 
its long dimension.  The goal for the marimba, especially in the lower registers, is to tune the 
first overtone to the double octave of the fundamental ( 01 4 ff = ) and the second overtone to 
somewhere between the minor and major third above the triple octave ( ) [1].  The 
primary difference in the xylophone is that the first overtone is tuned to a twelfth above the 
fundamental ( ) [2].  The marimba and xylophone bars are traditionally made of dense 
wood (although some synthetic bars are used) while the vibraphone utilises metal.  Each form 
makes use of tubular resonators to amplify the sound.  Those on the vibraphone have rotating 

01 8.9 ff ≈

01 3 ff =
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paddles at their upper ends to periodically open and close the resonator, producing an 
amplitude vibrato effect. 

When building one of these instruments, it would be advantageous to be able to 
accurately predict the shape of the undercut that would produce the desired pitch and overtone 
frequencies.  This would be especially so for volume manufacture where the avoidance of 
labour intensive manual tuning can reduce costs.  This paper offers a prediction method that 
has resulted in bars very close to their tuning goals without any subsequent fine tuning.  Given 
the non-homogeneous nature of wood, that cannot be accurately characterised, clearly some 
fine tuning of the wooden bars will always be required.  However, being able to reliably pre 
cut bars to within a known multi-mode frequency tolerance will go some way to aiding rapid 
manufacture.  Automated application of known tuning maps [3] could take care of the fine 
tuning. 

Several methods of modelling the non-prismatic beam have been published [1,4-12].  It 
is clear that the Timoshenko beam model is required [8, 12], as it is more accurate than the 
Euler-Bernoulli model, especially for the higher vibration modes – whether using 
mathematical or finite element models.  The mathematical models generally approximate the 
smoothly curved undercut by dividing the bar into a number of prismatic sections thus 
forming a ‘staircase’ approximation.  The boundary conditions at the ends of each section are 
matched to its neighbour and solved along with the support conditions (usually free-free, 
closely approximating the condition in the real instrument).  Various solution techniques have 
been used. 

A feature of wood is its frequency-dependent elastic properties.  Of particular 
importance in the present study is the change in Young’s modulus (E) as the frequency varies.  
It is usually higher than the static value but plateaus above about 150 Hz [12].  For accurate 
natural frequency prediction, this property should be taken into account. 

This paper presents a model for marimba bar tuning with three novel features.  Firstly, 
the non-prismatic beam is modelled using receptance sub structuring techniques [13] that 
account for both coordinates – bending and shear.  While not widely used, the Timoshenko 
beam receptances are available [14] and are used in this work.  Secondly, the geometrical 
shape of the undercut is not prescribed but rather a mathematical curve with three adjustable 
parameters.  The same goal is achieved by Henrique and Antunes [15] and Petrolito and 
Legge [16] with the use of finite element modelling and numerical optimisation techniques.  
In this paper, a three dimensional Newton-Raphson solution technique solves the three 
variable parameters such that the lowest three required natural bending frequencies are 
achieved.  Thirdly, the receptance model easily allows the Young’s modulus to be frequency 
dependent. 

2. THE MODEL 

The tip receptance of a prismatic beam is the steady state amplitude response at one end to a 
sinusoidal input at that (direct) or the other (cross) end.  The input may be either a transverse 
force or a moment and the response may be a displacement or a rotation.  Hence there are 
eight direct receptances and eight cross receptances, half of which are duplicated due to 
symmetry.  These can be calculated in closed form, including for the Timoshenko 
formulation. [13,14].  Prismatic sections (perhaps with different cross sectional dimensions) 
may then be ‘assembled’ in the following fashion. 

Consider two sections (B and C) of uniform prismatic beams that are to be joined into a 
single section A. (Figure 1) 
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  Determination of the tip receptances of A  would then enable a further 

section (D) to be joined in the same fashion as C was joined to B.  Repeating this process 
enables a complete staircase approximation of a non-prismatic beam to be constructed.  The 
resonant frequencies will be those for which any
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Figure 1. Joining beam sections B and C to give tip receptances of A 
 

At the joint, four conditions must be fulfilled:  
The internal shear forces on B and C must sum to zero:  i.e.  0=+ CB VV  (1) 
The internal moments on B and C must sum to zero:  i.e.  0=+ CB MM  (2) 
The deflections must be the same:  i.e. CB dd =  (3) 
The rotation (slopes) must be the same:  i.e.  CB ss =  (4) 
Introducing the nomenclature that all loads (forces and moments) are P and all 

displacements (deflection and slope) are U, then equations (1-4) become: 
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Use is made of the conventional symbols for receptances. ijα  are the receptances of 

system A, ijβ of B, ijγ of C, etc. The first subscript is the response location (lower or upper 
case) and type (d is transverse load and deflection, s is applied moment and slope) while the 
second subscript is the location and type of the excitation.  Then from the definition of a 
receptance and assuming linearity: 
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and by definition  (9) ⎥
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Rewriting equations (5) to (9) in an abbreviated form where bold font denotes a matrix: 
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 0PP CB =+ ;      0UU CB =+  (5a, 5b) 
 
 A2C1C PγPγU += ;       BB βPU =  (6a, 7a) 
 
 C4A3A PγPγU += ;       AA αPU =  (8a, 9a) 
 
We wish to solve for α  in terms of the known tip receptances of B and C. 
 

From (5a) to (7a): ( ) A2
1

1C PγβγP −+−=  (10) 
 
Substituting (10) into (8a): ( ) A2

1
14A3A PγβγγPγU −+−=  

 

Then from (9a): ( ) 2
1

143
A

A γβγγγ
P
Uα −+−==  (11) 

 
Finally, due to reciprocity resulting from the assumed linearity, dDDd γγ =  etc., and 

therefore , (11) becomes: T
24 γγ =

 
 ( ) 2

1
13 γβγγγα −+−= T

2  (12) 
 
The tip receptances for an Euler-Bernoulli beam are available in [13] and those for a 

Timoshenko beam in [14].  Note that these are exact results in both cases and hence α  from 
equation (12) is exact.  The only source of accuracy limiting is computer round off error.  
Natural frequencies occur whenever any element of  becomes infinite (its denominator goes 
to zero).  Due to the zero damping assumption, a sign change occurs as the resonance is 
traversed.  Therefore a resonant frequency can be easily located as the zeros of 

α

ijα1 of the 
assembled non-prismatic bar.  Use of software such as Matlab, where the default variable type 
is a matrix, makes coding the above method straight forward. 

The model was validated against exact natural frequency solutions for prismatic beams 
and also those offered for tapered cantilevers by Wang [17].  It was found that results correct 
to five significant figures were obtained for heavily tapered beams when the staircase 
approximation was given 300 or more steps.  This accuracy is within one cent (one hundredth 
of a semitone) even for the fundamental frequency of an A2 bar (110 Hz). 

3. APPLICATION 

As the goal is to alter the shape of the undercut in order to simultaneously tune the lower three 
bending natural frequencies, the mathematical description of the undercut geometry requires 
three adjustable parameters. For example, each of the following is possible where the 
dimensions are:  L, the total length of the bar, x, the dimension from the centre of the bar 
along the length, d is the depth at any point and  is the depth at the centre of the span.  The 
width of the beam is constant. 
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Exponential 1: ⎟
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Flat bottom with parabolic transitions (  is the uncut depth of the beam): 1d
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The cubic and the flat bottomed parabola have the advantage of zero slope at the centre 

of the bar thus eliminating any cusp.  The exponentials do not have such a constraint. 
To estimate the sensitivity of the three transverse vibration frequencies to each of the 

three variable parameters,  (central thickness of beam),  and , each parameter can, in 
turn, be slightly altered and the modelled frequencies predicted.  Hence the Jacobian matrix 
[18] can be estimated: 
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These rates of change, or sensitivities, can then be used in a three dimensional Newton-

Raphson method to drive the undercut shape to the objective of 
0

2

0

1 ::0 f
f

f
ff .  It is known, and 

confirmed here, that an undercut geometry that achieves this objective is not unique as more 
than one of equations (13) to (16) may yield a conforming geometry.  Furthermore, it may be 
that no solution exists. 

4. EXAMPLE PREDICTIONS 

As an example, Figure 2 shows the undercut geometry predicted using the cubic curve, 
equation (13), for various target second overtone ratios 

0

2
f
f .  In this case the fundamental is A2 

(110 Hz) with bar length 450 mm.  Figure 3 shows alternative geometries that result in the 
same frequency ratios and fundamental, choosing 8.9

0

2 =f
f  as an example.  The sensitivity of 

the fundamental frequency to the depth of the undercut (  in equation (13)) is high, viz. 50 
μm/Hz for the examples above.  This implies that manufacturing must be performed to tight 
tolerances. 

0d

5. MANUFACTURING AND FREQUENCY MEASUREMENTS 

Initially three bars were machined in 6061 Aluminium alloy rectangular bar so that the non 
homogeneity and anisotropy of wood were avoided.  The elastic properties were inferred by 
measuring the vibration frequencies of a prismatic bar and adjusting E and G in the 
Timoshenko receptance model until they agreed. 
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Figure 2. Predicted undercut geometries using cubic equation (13) and various 
0

2
f
f  ratios. 
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Figure 3. Predicted undercut geometries using equations (13-16),  
0
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ff =110:4:9.8. 

 
The resulting coordinates for the predicted undercuts were then calculated and used to 

control a CNC machining centre operating with a long end mill.  As mentioned previously, 
considerable care was required in setting up the job and avoiding distortion so that tolerances 
of about 0.01 mm could be achieved. 

Frequency measurements were made by supporting a bar approximately at its nodes on 
polyurethane foam and exciting with a percussion mallet.  A small (1 gram) accelerometer 
was attached to the bar with bee’s wax close to, but not at, a node in order to reduce mass 
loading effects.  A HP35665 spectrum analyser allowed 0.125 Hz resolution when using its 
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zoom FFT mode.  Table 1 shows the frequencies obtained and compares them to the target 
frequencies and those measured on a Van Sice concert marimba.  These frequencies are those 
obtained directly from the machined bar.  No further adjustments were made. 

The as-manufactured mid section dimensions of the C3 and B4 bars were measured and 
found to be in error by 0.014 and -0.030 mm respectively.  Using the predicted fundamental 
frequency sensitivity to this dimension, the fundamental frequencies can be adjusted.  This 
resulted in = 131.65 Hz (target 130.8 Hz) and 493.4 Hz (target 493.4 Hz).  Clearly the 
modelling technique was confirmed to be very accurate. 

0f

 
 

Table 1. Frequency targets and measurements – aluminium (51 x 19 mm). 

Target Experimental bar Measured Van Sice Pitch and 
Mode Hz Length

(mm) 
Hz Hz 0ffi 0ffi 0ffi  

C3   449.7     
f0 130.8 1  132.3 1 131.4 1 
f1 523.2 4  528.8 4.00 524.8 3.99 
f2 1281.8 9.8  1295.8 9.80 1313.8 10.00 

A3   389.6     
f0 220 1  222.3 1 220.1 1 
f1 880 4  885.3 3.98 879.9 4.00 
f2 2156 9.8  2164.3 9.74 2190.0 9.95 

B4   320.0     
f0 493.9 1  491.1 1 499.3 1 
f1 1975.6 4  1976.0 4.02 1996.0 4.00 
f2 4840.2 9.8  4766.5 9.71 4152.0 8.32 

 
A similar procedure was then undertaken with two wooden bars (Jarrah – Eucalyptus 
Marginata)  
 

Table 2. Frequency targets and measurements - wood. 

Target Experimental bar Pitch and 
Mode Hz Length

(mm) 
Depth Hz 0ffi 0ffi  
1d (mm)

C3   450.5 30.2   
f0 130.8 1   130.8 1 
f1 523.2 4   529.5 4.05 
f2 1281.8 9.8   1298.0 9.93 

A3   392.0 19.7   
f0 220 1   220.8 1 
f1 880 4   852.0 3.86 
f2 2156 9.8   2096.0 9.49 

6. CONCLUSIONS 

The combination of receptance sub-structuring methods and use of the Timoshenko beam 
receptances has provided accurate predictions of the undercut shapes required to meet the 
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objective transverse vibration frequency ratios of marimba bars.  When corrected for 
manufacturing error, the fundamental frequencies were very accurate.  The receptance method 
also allows frequency dependent elastic properties to be easily incorporated into the solution.  
Experimental tests have shown that the technique could be used to provide initial shaping of 
marimba and xylophone bars in wood prior to manual fine tuning.  Automated initial and final 
tuning may be possible. 
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