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Abstract 
 
The rolling element bearing is a key part in many mechanical facilities and the diagnosis of its 
faults is very important in the field of machinery health monitoring. Currently the resonant 
demodulation technique (envelope analysis) has been widely exploited in practice. However, 
much practical diagnostic equipment for carrying out the analysis gives little flexibility to 
change the analysis parameters for different working conditions, such as variation in rotating 
speed, and different fault types. Because the signals from a flawed bearing have features of 
non-stationarity, wide frequency range and weak strength, it can be very difficult to obtain the 
best analysis parameters for diagnosis. However, the kurtosis of the vibration signals of a 
bearing is different from normal to bad condition, and is robust in varying conditions. Secondly, 
as genetic algorithms have a strong ability for optimization, the authors present a model and 
algorithm to design the parameters for optimal resonance demodulation using kurtosis as a 
criterion. The feasibility and effectiveness of the proposed method are demonstrated by 
experiment and give better results than the classical method of arbitrarily choosing a resonance 
to demodulate. The method gives more flexibility in choosing optimal parameters than another 
optimization procedure based on the fast kurtogram. 

1. INTRODUCTION 

Rolling element bearings are the heart of almost every rotating machine, including planes flying 
in the sky and trains running on track. Bearing failures can sometimes cause both personal 
damage and economic loss, if the fault cannot be detected and diagnosed well in advance. 
Therefore they have received a lot of attention in the field of vibration analysis as they represent 
an area where much can be gained from the early detection of faults. R. F. Burchill et al. [1] 
presented the method of resonance demodulation to diagnose the fault of rolling element 
bearings in the 1970’s, and the SPM Company later developed an instrument to detect rolling 
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element bearing faults based on measurement of the resonant responses of an accelerometer 
excited by the faults. In the first case, there was a general problem to find the optimum 
resonance to demodulate, to give the best separation of the bearing fault signal from 
background noise. In the second case, the resonance frequency used as a carrier was that of the 
accelerometer itself (approx. 33 kHz), and was not always optimal [2]. With large machines and 
large faults, the resonances excited are often lower in frequency than 30 kHz. With evolution of 
the technologies of the sensor, signal processing and engineering measurement, many 
approaches have been developed in recent years, such as wavelet analysis, EMD (empirical 
mode decomposition), cepstral analysis and so on [3-9]. Although these methods have added to 
the development of the condition monitoring of rolling element bearings, much practical 
diagnostic equipment for carrying out the analysis still gives little flexibility to change the 
analysis parameters for different working conditions. In many cases such as complicated 
working conditions and variation in the rotational speed, the diagnosis sensitivity is poor. Also 
back in the 1970’s, kurtosis was suggested as a means of detecting the transient pulses arising 
from gear and bearing faults, but once again little guidance was given for choosing an 
appropriate frequency range for filtering bearing signals to maximize the kurtosis [10]. 
Currently a number of researchers have testified that the spectral kurtosis of the vibration of 
rolling element bearings can better characterize the transients which arise from the faults in a 
bearing and have developed some approaches to diagnose the fault of a bearing at the same time 
as indicating the optimum frequency bands for demodulation [11-14]. Since genetic algorithms 
have adaptive features and a strong ability to optimize parameters, this paper presents a new 
approach to detect the faults in rolling element bearings based on a genetic algorithm and the 
kurtosis as a criterion.  

2. THE CHARACTERISTICS OF ROLLING BEARING SIGNALS 

The key to fault diagnosis of a rolling element bearing is to capture the special symptoms 
arising from their faults. Acceleration signals measured on the casing consist of two parts: 

)()()( tntxty += , where )(tx  is the defect-induced impulse responses  and )(tn  is the 
background noise, including vibration signals generated by other components, such as rotor 
unbalance and gear meshing.   Because of the structure and mode of operation of rolling 
element bearings, x(t) has distinct features as follows 
(1) Wide frequency: As a rolling element strikes a localized defect in a very short period, it 
excites a wide range of resonances of the structure of the bearing system. For initial local 
defects, almost all frequencies are excited equally, but with extended spalls whose surfaces tend 
to become smoother with wear, not all frequency ranges are equally excited, and it becomes 
more important to find the resonances actually excited in each case. 
(2) Small energy: The energy created by the defect is very small, and typically occupies less 
than one thousandth of the total signal energy. A band has to be found where the bearing signal 
dominates over other components. 
(3) Nonstationary signal: Incipient bearing faults produce a series of repetitive short 
transient forces, which in turn excite structural resonances. Hence a reasonably versatile model 
for )(tx  is the generalized shot noise process [11]: ∑ −=

k
kk thXtx )()( τ  where )(th  is the 

impulse response resulting from a single impact and where }{ kX  and Zkk ∈},{τ  are 
sequences of random variables which account for possibly random amplitudes and random 
occurrences of the impacts, respectively. The stochasticity of the occurrences }{ kτ is caused by 
the random slips of the rolling elements, and the spacing between the pulses is a random 
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variable that varies by approximately 1% from the   kinematic spacing that would occur in the 
case of no slip. In [6] it is shown that because there is no memory of previous slips, the resulting 
signals are not exactly cyclostationary, but can be termed “pseudo-cyclostationary” and 
usefully treated as though cyclostationary. The amplitudes }{ kX represent the time-varying 
amplitude-modulation of the impacts, and typically have a deterministic component caused by 
periodic passage of the fault through the load zone and periodic variation of the signal 
transmission path, and a stochastic component caused by random variations in load and bearing 
component geometry. Because pulses are only generated by positive force between the bearing 
components, the amplitudes }{ kX  are always non-negative. 
Because the signals generated by a defective rolling element bearing have the characteristics 
mentioned above, it is difficult to recognize their faults through simple frequency analysis. An 
early developed and widely used technique to tackle this issue is so-called envelope analysis. 
The key to this method is to choose a good band-pass filter. However, for fixed parameters of 
the band-pass filter (such as central frequency, bandwidth) which normally can’t be changed 
with the bearing working condition, the filter choice may not always be sensitive enough for 
some working conditions and/or fault types. A typical example is where a bearing runs over a 
wide range of speed. When it runs at very low speed, the defects may excite relatively low 
frequency resonances, while when it works at high speed, higher resonance frequencies may be 
excited. Thus, for a band-pass filter with constant parameters, it can’t meet the demands to 
detect the fault precisely for a bearing working over a wide speed range or varing conditions. 
The kurtosis of the vibration signal of a rolling element bearing can characterize the transients 
which result from the bearing fault, if they can be separated by an optimal filter from the 
background noise of harmless vibrations. Hence we decide to utilize a genetic algorithm to 
optimize the parameters of the band-pass filter using a cost function based on kurtosis. 

3. THE ENVELOPE ANALYSIS BASED ON GENETIC ALGORITHM  

The key to successful envelope analysis is to design a band-pass filter dynamically, whose filter 
parameters can be varied with the bearing working condition. For a band-pass filter, the six 
parameters to be determined are that it attenuates no more than Rp dB in the pass-band, and has  

at least Rs dB of attenuation in the stop-band, Wp1,Wp2 and Ws1, Ws2 are the pass-band and 
stop-band edge frequencies, shown in Fig 1. Previously these parameters were chosen 
according to practical experience; here we select them using a genetic algorithm, which has the 

Rp 

Rs 

Wp1 Ws1  Wp2 Ws2 

Fig 1 Band-pass Filter Sketch Map 
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Output 
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ability to search the optimal solution over the whole zone and give fast convergence to solve the 
problem, in particular for nonlinear optimizations problems.  The scheme for solution of the 
problem is shown in Fig 2. 

 

3.1 Expression of the parameters of a filter by the genotype 

The parameters of a filter must be expressed by the genotype for a genetic algorithm. Here we 
propose a coding approach for the genotype based on binary bits. We use 49 binary bits to 
express a filter, where sR   occupies seven bits from the first to the seventh bit, pR  occupies two 
bits from the eighth to the ninth bit, 1sW  , 1pW , 2pW  , 2sW  each occupy ten bits and the order 
arrangements are the same as sR  and pR , the expression being shown as follows.  

 

2211

*************************************************

sppsps WWWWRR
 

Where * stands for 0 or 1. The genotype has the relationships with sR , pR , 1sW , 1pW  , 2pW  and 

2sW  shown by formulas (1) to (6).  

Vibration Signals

To generate GN band-pass filters randomly according to genetic rules 

To feed vibration signals to GN filters, and filter the signals 

To take the envelope of the filtered signals, and obtain their spectra 

To calculate the kurtosis of the spectra of the filtered signals 

Does the kurtosis reach maximum ？

To construct new generation of GN band-pass filters by 
crossover, mutation and heredity based on the fitness of kurtosis 

To obtain the optimal filter 

To filter the vibration with the optimal filter, do envelope analysis and 
obtain the envelope spectrum of the bearing 

To diagnose the fault of the bearing from  the spectrum     

Yes

No

Fig 2  The flow chart of the genetic algorithm (GN = genotype population) 
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In the formulas (1) to (6), Fs is sampling frequency, chrom(i) stands for the binary bit of the 
genotype. Hence, if the genotype of a filter has been determined, the parameters of a filter will 
be selected completely.  

3.2 Genetic algorithm operation 

After the formula of the filter has been expressed by genotype, the genetic algorithm can be 
carried out as follows. 
(1) Initial group of genotype 
For starting the genetic algorithm operation, the initial group of genotypes must be randomly 
generated. The size of the genotype population (GN) is decided by experience. From 
experiments, we find that 10040 ≤≤ GN  is suitable. In this paper GN is equal to 60. 
(2) Fitness of genotype  
The fitness of a filter is an indicator to distinguish the fault effectively for different bearing 
working conditions. The advantage of the kurtosis as fitness parameter is that it takes high 
values in the presence of the fault signal x(t), whereas it is ideally zero when only background 
noise n(t) is present. This is true when the impulse responses generated by the impacts are 
sufficiently well separated and when the signal-to-noise ratio is sufficiently high. As a matter of 
fact, background noise often embodies strong vibrations from several competing sources (e.g. 
harmonics of rotating parts, random impulses from friction and contact forces, flow noise, etc.) 
which span a large frequency range and seriously mask the signal of interest. As a result, the 
kurtosis is unable to capture the peakiness of the fault signal and hardly departs from a value of 
zero. In this situation, the kurtosis as a global indicator is not appropriate, and it is preferable to 
apply it locally in different frequency bands. This is exactly what the spectral kurtosis does. 
According to Ref.[14], if y is the squared envelope, then the spectral kurtosis can be calculated 
using equation (7), to give a single value for each filter. 

2
))((
)()( 2

2

−=
ymean
ymeanykurtosis                                                        (7) 

The value 2 is subtracted here to obtain a value zero for the squared envelope of Gaussian noise. 
The best filter is chosen as the one that gives the highest value of kurtosis. This filter is retained 
and then re-used to obtain the squared envelope signal and the squared envelope spectrum. 
(3) Replicate 
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The partial children genotypes come from the replication of the parent genotype, (whose 
probability of fitness is higher the value Ps (replicative probability). The fitness probability iλ  
of a signal from a filter is as follows 

maxq
q j

j =λ ，
∑
=

= GN

j

j

jKurtosis
GN

jKurtosisq

1

)(1
)(                                （8） 

Here GNjqq j K,2,1),max(max == . If jλ  is larger than Ps, the genotype will be retained in 
the children genotypes. 
(4) Crossover 
A crossover operation is to choose a pair of parent genotypes randomly, and according to two 
random numbers N1 and N2  (1<N2 < N1< 49) exchange segment bits of two genotypes from 
the N1-th bit to the N2-bit respectively. The crossover probability Pc is selected by experience, 
hence the children genotype is GN * Pc/2. 
(5) Mutation 
A mutation operation is to select Pm*GN parent genotypes according to mutation probability 
Pm, then change each bit from original “1” to “0” or original “0” to “1” to form children 
genotypes. 
(6) Terminating conditions 
The genetic algorithm operation is terminated when satisfying one of the following conditions: 
(a) The maximum value of the fitness doesn’t change during certain generations. 
(b) The fitness is larger than a given value. For example, if kurtosis(y) > 15, the fault of a 

bearing can be recognized by experience.   

4. EXPERIMENTAL INVESTIGATION 

In order to testify the feasibility and effectiveness, signals were used that had been collected by 
N. Sawalhi at The University of New South Wales. In the test rig, a single stage gearbox is 
driven primarily by a 3-phase electric motor, but with circulating power via a hydraulic 
motor/pump set. The input and output shafts of the gearbox are arranged in parallel and each 
shaft is supported by ball bearings (Koyo 1205), one of which is used for investigation. A rough 
fault was introduced into the inner race of the ball bearing. This was performed using electric 
spark erosion and generated a rough surface over half the inner race. The signals were collected 
at a speed of 600 rpm using an accelerometer positioned on the top of the gearbox casing near 
the bearing. It had previously been found that this extended rough fault was difficult to detect 
by conventional envelope analysis. A typical experimental result is shown in Fig 3.  The defect 
frequency at which the ball passes the defect on the inner race (BPFI) can be estimated as 71.1 
Hz at the speed 600 rpm and the pulse series is modulated by the shaft speed 10 Hz.  According 
to the previous analysis, we designed a filter based on the genetic algorithm, for which the 
parameters of the genetic algorithm are: GN=60, Ps = 0.59, Pc = 0.4, Pm = 0.01. As explained 
above, when the kurtosis of the envelope signal reaches 12, the fault signal caused by a 
defective rolling element bearing can be separated from the background noise, so the target 
kurtosis is assumed to be 15. The parameters for the optimal filter were found to be: 

9.32=sR dB, 1=pR dB, 431.01 =sW kHz, 21.141 =pW kHz, 37.212 =pW kHz, 
88.262 =sW kHz. When the vibration signal is filtered by the optimal filter and then envelope 

analyzed, the envelope spectrum of the defect bearing is illustrated in Fig 3, and the kurtosis 
reaches 23.6. From Fig 3(b), it is verified that the spectrum of the original vibration signal 
cannot detect any bearing fault indication, while the spectrum from the envelope analysis of the 
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optimal filter signal not only eliminates the strong gear vibration signal but also indicates the 
defect frequency 71 Hz (including its second and third harmonic frequencies 142Hz and 
213Hz) surrounded by sidebands spaced at shaft speed 10 Hz. Therefore according to this 
information we can determine the fault and its location in the bearing, as well as the severity of 
the fault using the amplitude of the spectrum. On the other hand, using traditional envelope 
analysis with the parameters of 00.81 =pW  kHz, 00.102 =pW  kHz (chosen because there is a 
local resonance in the spectrum in this range) we see in Fig. 4 that we cannot get the desired 
result for the same signal, since the envelope spectrum is dominated by harmonics of shaft 
speed, in particular the gearmesh frequency (harmonic 32). We also used the fast kurtogram 
method [15] to process the same signal, and obtained a somewhat similar result, however, it 
should be realized that the fast kurtogram has a limited range of possible centre frequencies, in 
particular when the bandwidth is wide. The total frequency band is divided successively into 2, 
4, 8….etc bands, which thus specifies the centre frequencies for each bandwidth, whereas using 
the GA method of this paper, the centre frequency,bandwidth and lower and upper edges of the 
filter are optimized independently 

 
Fig 3  The vibration signals and their spectra for a defect bearing (inner defect) 

 (a) Original vibration signal (b) The amplitude spectrum of original signal  
(c) The amplitude spectrum of the band-pass filter (d) The signal filtered by 
 the BP filter (e) The envelope signal   (f) The envelope spectrum 

     
   Fig 4 Traditional envelope analysis 

(a) The signal filtered by the traditional BP filter (b) The traditional envelope spectrum 
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5. CONCLUSION 

In this paper, the authors present an approach for diagnosis of rolling element bearings based on 
kurtosis of the bearing transient signal and a genetic algorithm to select an optimum bandpass 
filter. The advantages are firstly that because the spectral kurtosis of the bearing vibration 
signals robustly indicates the transients corresponding to the bearing fault, it is a good dynamic 
fault indicator under complicated bearing working conditions. Secondly the genetic algorithm 
based on spectral kurtosis has a strong ability to optimize the parameters for the envelope 
analysis very fast and with minimal constraints on centre frequency and bandwidth. The 
experimental investigation has testified the feasibility and effectiveness in comparison with 
traditional envelope analysis and even with an alternative optimization method based on the 
fast  kurtogram. 
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