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Abstract 
 
A thin rubber coating with cavities in a doubly periodic lattice can redistribute sound energy, 
normally incident on a steel plate, in the lateral direction. An anechoic effect appears by 
absorption in the surrounding rubber. This effect is modeled and studied by adapting modern 
semianalytical computation techniques for electron scattering and band gaps in connection 
with photonic and phononic crystals. In comparison to more flexible but also more computer 
intensitive methods, such as FEM modeling, there are two advantages. First, an improved 
physical understanding of the anechoic effect can be achieved by simplified semianalytical 
analysis. The viscoelastic shear-wave properties of the rubber are crucial for generating the 
desired loss, but compressional-wave absorption can be useful to reduce the reflectance at 
higher frequencies. The second advantage is the computational speed, which allows modern 
global optimization techniques to be applied for coating design. Differential evolution 
algorithms are used to design coatings with significant echo reduction within broad frequency 
intervals. Computational speed is enhanced by utilizing symmetry properties to reduce the 
size of the pertinent equation systems. The fastest computations are obtained for spherical 
cavities of a common size, but extensions to mixed cavity sizes are shown to be possible and 
useful.  

1. INTRODUCTION 

Rubber coatings with air-filled cavities or scatterers can be used on submarines for anechoic 
purposes [1]. Such coatings are said to be of Alberich type. When sound from an active sonar 
enters the coating, Fig. 1, energy that is scattered by the cavities can be absorbed by the 
rubber material, and the reflection amplitude can be reduced significantly.  

Reflections of normally incident plane waves by steel plates with Alberich coatings 
have been modeled numerically in [2]-[4] with a semi-analytical method borrowed from 
atomic physics [5] and applied in recent years to studies of band gaps for photonic and 
phononic crystals [6],[7]. Sound propagation through a sequence of layers, with or without 
cavities, is handled recursively by the invariant embedding or Riccati method [8]. The wave 
field scattered by each cavity is expanded in spherical wave functions, and multiple scattering 
among the cavities is incorporated in a rigorous self-consistent way. Transformation formulas 
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between spherical and plane waves provide the coupling to the plane waves needed for the 
recursive invariant embedding treatment of multi-layered cases. The mechanism of the echo 
reduction was studied in [2] and [3]. Cavities filled with soft or hard material can be used, 
with monopole and dipole scattering, respectively, as important mechanisms. Effects of 
multiple scattering among the cavities are seen to be noticeable in both cases. With hard 
inclusions, the multiple scattering is even crucial and a dense grid is required. Experimental 
results to verify high-frequency scattering in nonnormal directions were included in [4]. 
Coating design by global optimization was attempted in [3] and [4].  

 

 

Figure 1. Left: A steel plate in water is covered with an Alberich rubber coating with spherical cavities 
of two sizes. Right: The cavity lattice with period d is viewed from another perspective. Horizontal xy 
coordinates are introduced along with a z coordinate axis. The rotation angle between the xy axes and 
the lattice period directions, denoted χ in the text, vanishes in this illustration.  
 
 

For each cavity interface, the cavities in [2]-[4] were assumed to be identical and 
spherical. After a brief review of the basic computational method, it is described in the present 
paper how cavities of different sizes can be included in the same cavity interface, and 
symmetry properties are utilized to enhance computational speed. Applications to coating 
design and loss distribution computations are presented.  

2. BASIC COMPUTATIONAL METHOD 

As in Fig. 1, a right-hand Cartesian xyz coordinate system is introduced in a fluid-solid 
medium surrounded by homogeneous half-spaces. The medium is periodic with period d in 
horizontal directions rotated an angle χ from the x and y directions, respectively. Sound waves 
with time dependence exp(-iωt), to be suppressed in the formulas, are considered, where ω is 
the angular frequency. It follows that an incident plane wave with horizontal wavenumber 
vector k|| will give rise to a linear combination of reflected and transmitted plane waves with 
displacement vectors  
 

u(r) = exp(i Kgj
s·r)·ej .         (1) 

 
Here, r=(x,y,z), j=1,2,3 for a wave of type P,SV,SH, respectively, s=+(−) for a wave in the 
positive (negative) z direction, and  
 

Kgj
± = k|| + g ± [ (ω/cj)2 − |k|| + g|2 ]½·(0,0,1) =  ω/cj·(sin θ cos φ, sin θ sin φ, cos θ)  (2) 

 
where g belongs to the reciprocal lattice  
 

g = (kx,ky,0) = 2πm/d·(cos χ, sin χ, 0) + 2πn/d·(−sin χ, cos χ, 0)   (3) 
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where m and n are integers. Furthermore, cj is the compressional-wave velocity α when j=1 
and the shear-wave velocity β when j=2,3. The angular variables θ,φ of Kgj

± are defined by 
(2), with a possibly complex cos θ. The vectors ej = ej(Kgj

±), are defined by e1 = (sin θ cos φ, 
sin θ sin φ, cos θ), e2 = (cos θ cos φ, cos θ sin φ, −sin θ), e3 = (−sin φ, cos φ, 0).  

As detailed in [2]-[4], and references therein, reflection and transmission matrices RB,TB 
and R

B

A,TA can now be introduced, for the discrete set of waves specified by ( )-( ). Including 
one scatterer interface within the rubber layer, four interfaces are involved in the left panel of 
Fig. 1. Individual R/T matrices can be combined recursively , , and layer thicknesses are 
conveniently accounted for by phase shifts.  

1 3

[5] [8]

2.1 Interface with Periodically Distributed Scatterers of a Common Type 

Explicit expressions for the R/T matrices are well known for an interface between two 
homogeneous half-spaces [8]. Spherical vector solutions to the wave equations can be used to 
handle an interface with periodically distributed scatterers [6]. As in [2]-[4], ulm

0L(r), ulm
0M(r), 

ulm
0N(r) and ulm

+L(r), ulm
+M(r), ulm

+N(r) are here used to denote regular solutions involving the 
spherical Bessel function jl and outgoing solutions involving the spherical Hankel function 
hl

+, respectively. The L and N solutions are spheroidal, while the M solutions are toroidal. The 
pertinent wave velocity is α for the L solutions, and β for the M and N solutions. The index 
l=0,1,2,.. with m=−l,..,l, since the spherical harmonics are involved, but it is understood that 
u00

0M ≡ u00
0N ≡ u00

+M ≡ u00
+N ≡ 0. For scatterers at R = md·(cos χ, sin χ, 0) + nd·(-sin χ, cos χ, 

0), with integers m,n, and an incident plane wave as in (1), the total scattered field usc can be 
written [6]  
 

usc(r) = ∑Plm [ blm
+P ∑R exp(i k||·R)·ulm

+P(r−R) ],  P = L,M,N.  (4) 
 

The vector b+ = {blm
+P} is determined by solving the equation system  

 
( I − T· Ω ) · b+ = T · a0

         (5) 
 

where I is the appropriate identity matrix, a0 = {alm
0P} gives the coefficients for expansion of 

the incident plane wave in regular spherical waves ulm
0P(r), Ω = Ω(d, χ, k||, ω/α, ω/β) is the 

lattice translation matrix {Ωlm;l'm'
PP'}, and T = {Tlm;l'm'

PP'} is the transition matrix for an 
individual scatterer. Specifically, b' = Ω · b+ and b+ = T · (a0+b') where b' = {blm

'P} gives the 
coefficients for expansion in regular spherical waves ulm

0P of the scattered field from all 
scatterers except the one at the origin. A computer program for calculating Ω can be found in 
[5].  

The R/T matrices are obtained, finally, by transforming the expansion (4) to plane 
waves of the type (1).  

3. EXTENSIONS 

3.1 Different Types of Scatterers in the Same Plane 

As illustrated in Fig. 1, a particular case with two types of scatterers in the xy plane is 
considered here. Scatterers of the first type, with transition matrix T and scattered-field 
expansion coefficients denoted b+, appear at R = m·(d,0,0) + n·(0,d,0), for integers m,n. 
Scatterers of the second type, with transition matrix U and scattered-field expansion 
coefficients denoted c+, appear at points S in between, i.e., S = (m+½)·(d,0,0) + (n+½)·(0,d,0). 
The reciprocal lattice vectors become g = (2πm/d, 2πn/d, 0), where m,n run over the integers.  
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The generalization of the expression (4) for the scattered field becomes  
 

usc(r) = ∑Plm [ blm
+P ∑R exp(i k||·R)·ulm

+P(r−R) ] +       
∑Plm [ clm

+P ∑S exp(i k||·S)·ulm
+P(r−S) ] .     (6) 

 
It follows that 

 
b+ = T · (a0+b'+b'')  and  c+ = U · (a0+c'+c'')    (7) 

 
where, for a scatterer of the first type at the origin, b' and b'' give the coefficients for 
expansion in regular spherical waves of the scattered field from all other scatterers of the 
same and the different type, respectively. The vectors c' and c'' are defined analogously for a 
scatterer of the second type, in a translated coordinate system with this scatterer at the origin 
and a phase shifted incident plane wave to get phase zero at the new origin.  

With Ω0 = Ω(d, 0, k||, ω/α, ω/β), it follows that b' = Ω0 · b+ and c' = Ω0 · c+. For a certain 
matrix Q, to be determined, b'' = Q · c+ and c'' = Q · b+. The equation system for determination 
of b+ and c+ becomes  
 

   ( I − T· Ω0 ) · b+ − T· Q · c+      = T · a0.       
 − U· Q · b+ + ( I − U· Ω0 ) · c+ = U · a0.      (8) 

 
In order to form the R/T matrices, incident plane waves with different horizontal 

wavenumber vectors k||+ginc have to be considered, where ginc belongs to the reciprocal lattice 
{(2πm/d, 2πn/d, 0)}. Noting that the union of the scatterer positions is a small square lattice 
with period d/√2 tilted an angle π/4 with respect to the xy axes, the following expression for Q 
as a difference of Ω matrices is directly obtained  
 

Q =  Ω(d/√2, π/4, k||+ginc, ω/α, ω/β) − Ω0 .      (9) 
 
Only those ginc in {(2πm/d, 2πn/d, 0)} for which m−n is even are reciprocal vectors for the 
small tilted lattice. Since a lattice translation matrix Ω is periodic in its third argument with 
the same periods as the corresponding reciprocal lattice, there will be two groups of ginc with 
different Q matrices according to (9).  

The transformation of the expansion (6) to plane waves of the type (1) can be done 
separately for each of the R and S sums. In the latter case, the translation from the origin 
causes a sign change for some combinations of incident (ginc) and scattered (gsc) reciprocal 
lattice vectors.  

In this development, the two types of scatterers appear in the same horizontal plane with 
the S points midway between the R points. By applying translation formulas for spherical 
wave functions, e.g., [5] (Sec. IVC), it should be possible to treat more general cases.  

3.2 Equation System Split 

For the case of a spherical scatterer, explicit analytical expressions can be given for the 
transition matrix T = {Tlm;l'm'

PP'}, e.g., [6]. Furthermore, scattering only appears to the same 
l,m components (l'=l, m'=m), and also to the same type (P'=P) except that L waves can be 
scattered to N waves and vice versa. The matrices Ω have the following properties [6],[9]  

• compressional- and shear-wave elements are not mixed, i.e., Ωlm;l'm'
PP' vanishes when 

precisely one of P,P', is L and the other one is M or N 
• Ωlm;l'm'

LL, Ωlm;l'm'
MM and Ωlm;l'm'

NN vanish unless (l'+m')−(l+m) is even  
• Ωlm;l'm'

MN and Ωlm;l'm'
NM = −Ωlm;l'm'

MN vanish unless (l'+m')−(l+m) is odd.  
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As is well known, e.g., [5], it follows by considering T· Ω that the equation system (5) can 
be split into two subsystems. One subsystem concerns the blm

+L, blm
+N with odd l+m together 

with the blm
+M with even l+m , while the other subsystem concerns the blm

+L, blm
+N with even 

l+m together with the blm
+M with odd l+m.  

It is easily realized that the equation system (8) can be split into two subsystems by 
combining b+- and c+-vector elements in an analogous way.  

3.3 Utilizing Symmetry 

The recursive combination of individual R/T matrices [5],[8] involves matrix inversions, 
where the matrix dimension equals the finite number of plane waves according to (1)-(3), 
which are chosen to be included. For a compressional wave at normal incidence, k||=0, on the 
square scatterer lattice(s), symmetry arguments directly show that many of the reflected and 
transmitted plane waves will have equal coefficients. By forming a new wave basis from sums 
of plane waves with equal scattering coefficients, a matrix dimension reduction is achieved 
with almost a factor of eight. The waves with horizontal wavenumber vectors in the x, y, and 
diagonal directions must be combined in groups of four waves, rather than eight, and 
normally incident waves must be taken separately. The dramatic reduction of computation 
time that results is essential for the coating design examples to be considered in Sec. 4.  

Each sum of plane waves is expanded in regular spherical waves to get the a0 vectors 
for the equation systems (5) and (8). As pointed out in [5] (Sec. IVH), symmetry arguments 
make it possible to reduce the dimensions of these equation systems as well.  

4. COATING DESIGN 

Global optimization methods can be used to design anechoic coatings. Simulated annealing, 
genetic algorithms, and differential evolution (DE) are three kinds of such methods, that have 
become popular during the last fifteen years. DE, to be applied here, is related to genetic 
algorithms, but the parameters are not encoded in bit strings, and genetic operators such as 
crossover and mutation are replaced by algebraic operators. For applications to underwater 
acoustics, DE has been claimed to be much more efficient than genetic algorithms [10] and 
comparable in efficiency to a modern adaptive simplex simulated annealing algorithm [11].  

Fig. 2 shows four cases, I0,II0,Ia,IIa, of optimized coatings with air-filled spherical 
cavities as illustrated in Fig. 1. The steel plate is 4 mm thick, and it is immersed in water with 
sound velocity c = 1480 m/s. The steel parameters are 5850 and 3230 m/s for the 
compressional- and shear-wave velocities, respectively, and 7.7 kg/dm3 for the density. Only 
the rubber, modelled as a viscoelastic solid, is anelastic.  

The objective function for DE minimization was specified as the maximum reflectance, 
i.e., time- (and space-) averaged reflected energy flux relative to the time-averaged energy 
flux of a normally incident monofrequency plane compressional wave, in the frequency band 
15-30 kHz. For case IIa, right panel in Fig. 2, ten parameters, denoted p1,p2,..,p10, were varied 
within the following search space: rubber density [p1, 0.9-1.3 kg/dm3], rubber compressional-
wave velocity [p2, 1450-1550 m/s] and absorption [p3, 0-25 dB/wavelength], rubber shear-
wave velocity [p4, 70-150 m/s] and absorption [p5, 7-27 dB/wavelength], and lattice period 
[p6=d, 7-20 mm], coating thickness [p7, 2-5 mm], largest cavity diameter [0.5mm+p8·(p7-
2mm)] and cavity diameter quotient [p9, 0.5-1], outer coating thickness between water and 
largest cavities [1.5mm+ p10·(p7-2mm)]. The parameters p8 and p10 were defined as fractions 
such that p8+p10 ≤ 1.  

Cases I differ from cases II by exclusion of the smallest cavities (p9=0). Cases I0 and II0, 
left panel of Fig. 2, differ from cases Ia and IIa, right panel, by omission (essentially) of the 
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compressional-wave absorption (p3=0.1 dB/wavelength).  

 

Figure 2. Reflectancies in dB as functions of frequency for four DE optimization cases described in 
the text: I0,II0 to the left and Ia,IIa to the right. Some 40000 coating models were tested during the 
optimization for each case.  
 

Table 1 shows the optima along with corresponding parameter values. An echo 
reduction of almost 23 dB is achieved throughout the band 15-30 kHz with a coating of type 
IIa. Comparing cases I and II, inclusion of mixed cavity sizes brings about an improvement of 
2.6 dB in these examples. Half the optimum lattice periods d for the two cases II are 8.3 and 
9.95 mm, respectively, and it should be noted that the search region for parameter p6=d (7-20 
mm) allows coatings with equally densely spaced but equal cavities for the two cases I. The 
compressional-wave absorption is useful to improve the high-frequency performance.  

Thick, light, and soft coatings (large p7, small p1, and small p2) with high shear-wave 
absorption (large p5) and large cavities (large p8 and p7) are typically preferred. As illustrated 
in [4] for a case similar to case I0 here but allowing smaller outer coating thickness, 
identification of the parts of the parameter space resulting in favorable anechoic properties 
can be aided by a stochastic resampling algorithm borrowed from inverse theory [12].  
 

Table 1. Optima found by DE, with corresponding values of varied parameters.  

 Case I0 Case II0 Case Ia Case IIa

optimum -17.2 dB -19.8 dB -20.2 dB -22.8 dB 
p1 0.900 kg/dm3 0.900 kg/dm3 0.900 kg/dm3 0.901 kg/dm3

p2 1453 m/s 1457 m/s 1450 m/s 1450 m/s 
p3   20.9 dB 13.2 dB 
p4 149 m/s 135 m/s 145 m/s 123 m/s 
p5 26.9 dB 26.8 dB 26.7 dB 25.3 dB 

p6=d 13.7 mm 16.6 mm 19.1 mm 19.9 mm 
p7 4.997 mm 4.949 mm 4.999 mm 4.980 mm 
p8 0.925 0.975 0.991 0.940 
p9  0.570  0.565 
p10 0.008 0.008 0.006 0.002 

 

Further results concerning cases II0 and IIa are presented in the left panels of Figs. 3 and 
4, respectively. It is shown how the energy flux of the normally incident plane wave is 
divided into reflected flux, transmitted flux, and absorption in the rubber. The panels to the 
right illustrate the significance of the cavities by showing corresponding results for 
corresponding rubber coatings without cavities.  



ICSV14 • 9-12 July 2007 • Cairns • Australia 

 

Figure 3. Left: The reflectance curve for case II0 is copied from the left panel of Fig. 2 and shown 
together with the corresponding transmittance and absorption loss curves. Right: 
Corresponding results are shown for a similar coating without cavities.  

 

Figure 4. Left: The reflectance curve for case IIa is copied from the right panel of Fig. 2 and 
shown together with the corresponding transmittance and absorption loss curves. Right: 
Corresponding results are shown for a similar coating without cavities.  

5. ABSORPTION LOSS DISTRIBUTION 

As explained in [2], the plane waves approaching the cavity lattice(s) from above and below 
can be determined, and the wave field around a cavity can subsequently be expanded in 
spherical waves. It follows that the absorption in a spherical rubber shell around each cavity 
can easily be computed. Examples for the two cases II are given in Fig. 5, with the largest 
possible spherical shell to fit into the rubber layer in each case. The outer shell radius is thus 
1.739 mm in case II0 and 1.823 mm in case IIa.  

The cavity radii in case II0 are 1.687 mm and 0.962 mm, and the corresponding shells 
occupy only 0.14 % and 1.34 % of the rubber volume, respectively. In case IIa, the 
corresponding shell volume fractions are 0.33 % and 1.11 %, for cavity radii 1.650 mm and 
0.932 mm, respectively. Hence, by the (b) and (c) curves of Fig. 5, a disproportionately large 
part of the absorption loss takes place in the specified shells, in comparison to their volumes.  

 

Figure 5. The left and right panels concern cases II0 and IIa, respectively. In each case, curve (a) 
shows the fraction of the incident energy flux that is absorbed. Transformed to dB, these curves have 
already appeared in Figs. 3 and 4. The (b) and (c) curves show the fraction of the incident energy flux 
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that is absorbed in certain cavity-enclosing spherical shells specified in the text. In each case, the (b) 
results are for the largest cavities and the (c) results are for the smallest ones.  

6. CONCLUSIONS 

A fast semi-analytical technique for computing scattering from layers including doubly 
periodic scatterer lattices has been extended to cases with spherical cavities of two different 
sizes in the same horizontal plane. Applications to design of anechoic coatings with a 
differential evolution algorithm for global optimization indicate improvements by almost 
three dB of the reflection reduction that can be achieved. The small cavities in the suggested 
coatings have radii of about 57 % of the radii of the large cavities. Symmetry arguments are 
used to reduce equation system dimensions and enhance speed in the repeated computations.  

Rubber compressional-wave absorption can be useful to enhance the echo reduction in 
the high-frequency regime. The cavities and the shear-wave absorption in the rubber are 
essential, however, to produce a good performance with a reasonably thin coating. The 
absorption loss that takes place in the vicinity of the cavities is disproportionately large, as 
shown by explicit computations.  

Work is in progress concerning extensions to nonspherical cavities, for which 
transmission matrices can be computed numerically, e.g., [13]. Further improvements are 
expected concerning the coatings that can be designed.  
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