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Abstract 
Flexural vibration in the periodic pipe system conveying fluid is studied in this paper. Using the 
transfer matrix method, the complex band structure of the flexural wave is calculated to 
investigate the gap frequency range and the vibration reduction in band gap. And the complete 
flexural vibration band gaps exist in the piping system with fluid loading. The effect of the fluid 
on the gaps is considered. The existence of flexural vibration gaps in periodic pipe with fluid 
loading gives a new idea in vibration control of pipe. 

1. INTRODUCTION 

In last decade, the propagation of elastic or acoustic waves in periodic composites, so called 
phononic crystals (PCs), has received much attention [1-3]. This is of interest for applications 
such as frequency filters, vibrationless environments for high-precision mechanical systems or 
design of new transducers. 

The vibration propagation in periodic structures was researched some time ago [4-5]. The 
theory to predicting the vibration response of periodic structures has been applied primarily to 
analysis the periodic structures as pass band and stop band. Recently, with the theory of PCs, 
the Vibration band gaps including longitudinal vibration, flexural vibration and so on, in 
periodic beams have been studied both theoretically and experimentally [6-9]. 

Vibration analysis of piping systems conveying fluid has received considerable attention 
due to wide application to areas such as designing heat exchanger tubes, main steam pipes and 
hot/cold leg pipes in nuclear steam supply systems, oil pipeline, pump discharge lines, marine 
risers and so forth [10]. So the vibration analysis of pipe had been studied early [10-13]. The 
free wave propagation in the periodically supported, infinite piping system conveying fluid was 
studied [11]. The results of Ref.[11] show that if the dominant frequency contents in the 
excitation loads are known, a proper design of periodic supports for reducing the vibration in 
those frequency band gaps is possible. 

In this paper, we investigate the flexural vibration band gaps in the periodic pipe system 
conveying fluid. Using the transfer matrix (TM) method, the complex band structure of the 
flexural wave is calculated to investigate the gap frequency range and the vibration reduction in 
band gap.  
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2. THEORY OF TRANSFER MATRIX 

Figure1 shows a periodic binary composite pipe system. The system consists of an infinite 
repetition of alternating pipe A with length a1 and pipe B with length a2. Thus the PCs pipe’s 
lattice constant is a=a1+a2. Pipe A and pipe B can be made up of different material parameters 
or different geometrical parameters, illustrated as figure1(a) and figure1(b). 

A B

a1 a2

 
(a) 

A B
 

(b) 
Figure1. The sketch map of periodic binary pipe. (a) pipe wall with periodic material parameters; (b) 

pipe wall with periodic geometrical parameters. 
 

For the Euler-type pipe conveying fluids at a constant velocity v, if gravitational forces, 
internal damping, externally imposed tension and pressurization effects are neglected, the 
well-known governing equation of flexural vibration becomes [12,13] 
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where w is the flexural displacement, EI is the flexural rigidity of the pipe, mf  and  mp are fluid 
and pipe masses per unit length, v and t are the constant uniform fluid velocity and time 
respectively. 

For the Euler pipe without fluid loading, the motion equation is given as 
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For a harmonic traveling wave )(),( kxtiWetxw += ω , one can get the dispersion relation of 

equation(1) as  
 

0)(2 2224 =+−+− ωω pfff mmkvmkvmEIk                                      (3) 
 

For a given ω , the wavenumber roots of equation(3) include two real roots and a 
conjugate pair of complex roots, signed as [13] IRud ikkkk ±− ,, . The positive and negative real 
wavenumbers describe the propagating waves in positive and negative direction. And the 
conjugate root pair describes the near-field waves [14] (non-propagating, spatially decaying). 
The near-field wave has an imaginary component for all frequencies and it arises from a 
neighboring boundary, discontinuity or applied force. Also the wavenumbers depend on the 
frequency ω  and flow speed v [13]. 

The harmonic solution of equation(1) is  
 

)(),( 4321
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where the wave number ki (i=1,2,3,4) is given by k1=kd, k2=-ku, k3=kR + ikI, k4=kR - ikI. 
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And the harmonic solution of equation(2) for the pipe without fluid loading is [15] 
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where subscript N denotes the near-field wave component. And the wave number k is given by 
 

4 2 / EImk pω=                                                          (6) 
 

The continuities of displacement, slop, bending moment and shear force at the interfaces 
between cell n-1 and n, i.e. x=na give: 

 
)()0( ,1, aww BnAn −=                                                (7a) 

 
)()0( ,1, aww BnAn −′=′                                                (7b) 

 
)()0( ,1, awIEwIE BnBBAnAA −′′=′′                                        (7c) 

 
)()0( ,1, awIEwIE BnBBAnAA −′′′=′′′                                        (7d) 

 
One can obtain the matrix form of equation(7) 
 

BnAn ,1, −= HWKW                                                    (8) 
 

where [ ]TWWWW 4321 ,,,=W . 
The continuities at the interfaces between pipe A and pipe B in cell n, i.e. x=na +a1, give: 
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)()( 1,1, awaw BnAn ′=′                                                 (9b) 
 

)()( 1,1, awIEawIE BnBBAnAA ′′=′′                                        (9c) 
 

)()( 1,1, awIEawIE BnBBAnAA ′′′=′′′                                        (9d) 
 

The matrix form of equation(9) can be written as 
 

BnAn ,1,1 WHWK =                                                     (10) 

 
Basing on the equations(8) and (10), the relation between the nth cell and (n-1)th cell is 

given 
 

BnBn ,1, −= TWW                                                      (11) 
 

where HKKHT 1
1

1
1

−−=  is the transfer matrix. 
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Due to the periodicity of the infinite structure in the x direction, the vector nW  must 
satisfy the Bloch theorem [16] 

 
1−= n

iqa
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where q is the wave vector in the x direction. For convenience, we write all the one-dimension 
vectors as scalar form in this paper. 

It follows that the eigenvalues of the infinite periodic pipe structures with fluid loading are 
the roots of the determinant 

 
0=− IT iqae                                                         (13) 

 
where I  is the 44×  unit matrix. For given ω , equation(13) gives the values of q. Depending 
on whether q is real or has an imaginary part, the corresponding wave propagates through the 
beam (pass band) or is damped (band gap). 

Analogously, one can get the eigenvalues of the infinite periodic pipe structures without 
fluid loading basing on the equation(2). 

3. RESULTS AND DISCUSSION 

For the periodical pipe with different wall material parameters illustrated as Figure1(a). As an 
example, we calculated the band structure of the pipe A being made of epoxy and pipe B being 
made of steel. The elastic parameters employed in the calculations were Aρ =1180kg/m3, 

91035.4 ×=AE Pa for epoxy; and Bρ =7780kg/m3, 1110106.2 ×=BE Pa for steel. And the 
inner and outer radii of the pipe are chosen as 09.0i =r m, 1.0o =r m. The lattice constant is 
a=2m, and a1=a2=1m. And the flow speed v=50m/s. 

Figure2 illustrates the complex band structure. The real wave vector is illustrated in 
Figure2(a), and the absolute value of the imaginary part of complex wave vector is illustrated in 
Figure2(b). The shadowed region in Figure2(a) indicates the complete band gap, settling 
between 27Hz-40Hz, 112Hz-218Hz and 316Hz-497Hz. As for the two different real wave 
number k1, k2, there are two branches for a given frequency ω  in Figure2(a).  

During the gap ranges, wave vectors k1 and k2 have the imaginary parts [17]. They are 
illustrated as continues lines in Figure2(b), which can be used to describe the attenuation 
properties in band gaps. But from Figure2(b), one can find there is an imaginary wave vector 
(dashed line) within the frequency range of pass band. This is due to the near-field wave 
component k3 and k4. The values of k3 and k4 have imaginary part for all frequencies.  
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Figure2 The complex band structure of the periodic material pipe with fluid loading, internal fluid 

velocity v=50m/s 
 

As comparing, we also calculate the complex band structure of the pipe without fluid 
loading illustrated in Figure3. The material parameters and the geometrical parameters are 
same with those in Figure2. The first two gap ranges are 41Hz-51Hz and 165Hz-425Hz. 
Comparing Figure2 and Figure3, one can find the effect of the fluid load make the gap 
frequency lower. 
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Figure3 The complex band structure of the periodic material pipe without fluid loading 

 
For the different internal fluid velocity v, the wavenumbers will change [13]. So we should 

consider the effect of the internal fluid velocity v on the band gaps. In Figure4, the band 
structure of the pipe with fluid loading for velocity v=10m/s and v=100m/s. For v=10m/s, the 
first three gap ranges are24Hz-38.6Hz, 110Hz-216Hz and 314Hz-495Hz, and for v=100m/s, the 
gap ranges are 33.5Hz-43Hz, 119Hz-221Hz and 322Hz-502Hz. We can find the gap 
frequencies become higher with faster velocity v. 
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Figure4 The band structure of with different internal fluid velocity, (a) v=150m/s, (b)v=100 m/s 

 
For the pipe wall with periodic material parameters, it will be not applicable in engineering. 

Now we consider the pipe wall with periodic geometrical parameters shown in figure1(b). In 
the calculation, the whole pipe wall is made up of steel. And the inner and outer radii of the pipe 
are chosen as 09.0iA =r m, 1.0oA =r m for section A and 09.0iB =r m, 12.0oB =r m. The 
lattice constant is a=2m, and a1=a2=1m. And the flow speed v=50m/s. Figure5 illustrates the 
complex band structure. The band gap ranges are 120Hz-179Hz and 556Hz-667Hz. And for the 
periodic pipe without fluid loading, the gap ranges are 148Hz-222Hz and 691Hz-830Hz as 
illustrated in figure6. The effect of the fluid loading also makes the gap frequency lower. 
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Figure5 The complex band structure of the periodic geometrical pipe with fluid loading, internal 

fluid velocity v=50m/s 
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Figure6 The complex band structure of the periodic geometrical pipe without fluid loading  
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4. CONCLUSIONS 

In conclusion, the flexural vibration for a periodic pipe system with fluid loading is studied 
theoretically in this paper. The transfer matrix method is provided to calculate the complex 
band structure of the periodic pipe.  

By comparing the calculated results of the pipe with fluid loading to those without fluid 
loading, we find that find the effect of the fluid load make the gap frequency lower. Also, we 
can find the gap frequencies dependent on the internal fluid velocity. The gap frequencies 
become higher with faster velocity v.  

The existence of flexural vibration gaps in periodic pipe with fluid loading gives a new 
idea in vibration control of pipe. The findings will be significant in the application of band gaps. 
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