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Abstract

In this work we are concerned with noise generation by con�ned �ows: HVAC systems, auto-
motive exhaust systems (muf�ers), and industrial �uid distribution systems.

We are aiming at predicting the generation and propagation of �ow-induced noise in ducts
with arbitrary geometries, and for frequencies high enough for transverse modes to be cut-
on. Curle's analogy was shown to perform poorly in such con�gurations, when applied using
incompressible or low-order compressible CFD data as input. We have developed an innovative
hybrid method, based on the combination of Curle's analogy with a Boundary Element Method,
to compensate for the weaknesses of Curle's analogy in such applications. The originality of the
method stands in its decoupling between hydrodynamic and acoustical informations at the wall.

This method is validated by application to a test case: the sound emitted by a co-rotating
pair of vortex �laments leapfrogging in an in�nite 2D duct. Our results show a remarkable
agreement with a reference solution based on the duct modes, thereby validating our approach.

1. AEROACOUSTICAL ANALOGY

We consider the original analogy derived by Lighthill [1] for the sound generated by free turbu-
lence at low Mach numbers, and its generalisation by Curle [2] to account for the noise resulting
of turbulence interacting with solid steady surfaces.

Upon de�nition of a reference thermodynamic state (ρ0, p0) uniform in time and space
in a propagation region, Lighthill's analogy describes the propagation of acoustical density
perturbations ρ′ ≡ ρ− ρ0 at the speed of sound c0 =

√
(∂p/∂ρ)S in an homogeneous acoustic



ICSV14 � 9�12 July 2007 � Cairns � Australia

medium, emitted by the equivalent source ∂2Tij/∂xi∂xj:

∂2ρ′

∂t2
− c2

0

∂2ρ′

∂x2
i

=
∂2Tij

∂xi∂xj

(1)

where Tij = ρvivj + (p′ − c2
0 ρ′) δij − σij is the Lighthill stress tensor accounting for the sound

production by Reynolds stresses, non-isentropic processes and viscous stresses [1].
The wave propagation equation can be integrated in time and space by convolution with

a free �eld Green's function G0(t, x|τ, y), solution of the wave propagation equation with an
impulsive source emitted at the position y and time τ . This consists in propagating a source
term behaving as a monopole, to be scattered by the solid boundaries. We will show below
that this straightforward method is hampered by numerical robustness issues. A more sensible
approach proposed by Curle [2] consists in integrating by parts the integral of the source �eld,
leading to the well-known result:

ρ′(x, t) =

t∫

−∞

∫∫∫

V

ρ0vivj
∂2G0

∂yi∂yj

d3ydτ −
t∫

−∞

∫∫

∂V

p′
∂G0

∂yi

ni d2ydτ (2)

where the presence of the solid boundary appears through the dipole sources distributed over
its surface ∂V . Though exact from a formal viewpoint, the derivation that leads to Eq. (2) in-
troduces the assumption that the �ow model does account for scattering effects. Our experience
shows that this assumption is not valid for non-compact con�gurations as considered in this
work, especially when incompressible �ow modeling is involved. Indeed, if the pressure �uctu-
ation induced at the wall by nearby turbulence does effectively account for near-�eld scattering,
the pressure component that is radiated by remote sources is usually not accounted for when us-
ing incompressible or low-order compressible �ow simulations, especially when resolved over
unstructured meshes, at low Mach numbers. The approach based on Eq. (2) is still valid as long
as the source region is acoustically compact, because scattering is of negligible importance on
the one side, and because the acoustical effects for low Helmholtz numbers can be approxi-
mately captured by an incompressible modeling on the other side. But for non-compact cases,
the incompressible �ow model must be complemented by an acoustic correction to obtain a
realistic sound prediction. A straightforward alternative could consist in adopting for Eq. (2) a
Green's function G1 tailored to the geometry, i.e. having zero normal gradient at the boundary
surface, instead of the free �eld Green's function G0:

ρ′(x, t) =

t∫

−∞

∫∫∫

V

ρ0vivj
∂2G1

∂yi∂yj

d3ydτ . (3)

This tailored Green's function G1 accounts then for the scattering that was missed by the �ow
model, in addition to the incident �eld that was given by the Green's function G0. A comparison
of Eq. (2) and Eq. (3) shows that the surface integral of Eq. (2) represents the scattered �eld:

−
t∫

−∞

∫∫

∂V

p′
∂G0

∂yi

ni d2ydτ =

t∫

−∞

∫∫∫

V

ρ0vivj
∂2GS

∂yi∂yj

d3ydτ (4)
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where the Green's function GS = G1−G0 yields the scattered �eld (total �eld− incident �eld).
Tailored Green's functions are however only known for a quite limited number of ide-

alized cases, using mirror images of the sources for example in presence of in�nite planes, or
calculated by separation of variables when the geometry is aligned with orthogonal directions of
a suitable coordinate system. For low frequencies, analytical approximations can be considered,
such as Howe's compact Green's functions [3]. In most industrial applications and range of fre-
quencies however, the problem is not amenable to an analytical solution, and one must resort to
a numerical treatment. For internal problems, building a numerical Green's function based on
numerical acoustic modes is possible in theory, but the handling of this function depending on
the frequency, emitter and listener positions is not achievable in practice. We propose in next
Section an original approach, combining Curle's analogy with a Boundary Element Method, to
bring the acoustical correction needed when using incompressible �ow data at medium to high
Helmholtz numbers.

2. BOUNDARY INTEGRAL FORMULATION OF CURLE'S ANALOGY

The derivation of the boundary integral formulation follows the same approach as Curle's anal-
ogy. The inhomogeneous wave propagation equation is usually expressed in frequency do-
main in the form of the Helmholtz equation ∇2p̂a + k2 p̂a = q̂L where c2

0ρ
′ = p′a = p̂a eiωt,

and k = ω/c0, q̂L = −∂2T̂ij/∂xi∂xj with Tij = T̂ij eiωt. The Helmholtz Equation (2)
is solved using a free �eld Green's function G0 = e−ikr/(4πr) solution of the equation
∇2G0 + k2 G0 = −δ (x− y) in absence of solid surfaces. Dropping the hat notations, one
obtains:

∫∫∫

V \Vε

(∇2pa G− pa∇2G
)

d3y =

∫∫∫

V \Vε

qLG d3y +

∫∫∫

V \Vε

pa δ (x− y) d3y (5)

with however a signi�cant difference compared to Curle's analogy: an exclusion volume Vε in-
cluding the listener's position x was removed from the integration volume V , in order to apply
Green's theorem. The exclusion volume was not necessary in the derivation of Curle's analogy,
because in the classical aeroacoustical analogy the listener is implicitly situated in the propa-
gation region, de�ned well apart from the source �eld. At the opposite, the resolution of the
BEM model is performed by collocation, i.e. by placing the listener directly on the nodes of the
boundary surface, thereby introducing a singularity in the integration volume. This singularity
is excluded by removing the volume Vε from the source integration, and its contribution will be
evaluated by letting Vε shrink to zero volume. The point x being excluded from the integration
volume V \ Vε, the contribution of the third integral of Eq. (5) is equal to zero.

Applying Green's theorem, we �nd:

C(x) pL(x) =

∫∫∫

V

Tij
∂2G

∂yi∂yj

d3y−
∫∫

∂V

pL
∂G

∂n
d2y (6)

where the pressure pL comes from the Lighthill's tensor, irrespectively of any acoustic or hydro-
dynamic discrimination, at the difference of the pressure pa. The factor C(x) is the solid angle
seen by the point x in the exclusion volume Vε divided by 4π, i.e. equal to 1 when x is within
the volume, and equal to 1/2 when x lies over a smooth surface of the body.
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Equation (6) is quite similar to the result derived in the classical analogy of Curle (2),
up to differences related to the change from time to frequency domain, including the factor c2

0

due to the different Green's functions in time and frequency domains. A remarkable difference,
however, is that Eq. (6) does resolve the pressure �uctuations whatever their hydrodynamic
or acoustical nature, while Eq. (2) yields the acoustical pressure pa = c2

0ρ
′ in the propagation

region only. This results from having allowed the listener to enter the source region, while in
Curle's analogy the listener is always assumed as located in a uniform and quiescent propagation
region. As a corollary, Eq. (2) provides an explicit solution for the acoustic �eld, while Eq. (6)
can be seen as an implicit integral equation giving the pressure at any point of the �ow �eld,
including at the body surface, provided the volumetric term is known.

In line with the discussion of previous Section, we argue that an exact �ow description will
always satisfy Eq. (6), while an incompressible �ow model will only verify the same relation if
the domain V is acoustically compact, i.e. if acoustical propagation is irrelevant. In such case,
the pressure on both sides of Eq. (6) can be approximated by its incompressible, hydrodynamic
component: pL ' ph. In a more general case, we let the pressure be expressed as the sum
of a hydrodynamic and an acoustic component: pL = ph + pa. Besides, we decompose the
integration domain of (6) in two parts, corresponding respectively to volumes V1 and V2, and
their boundaries ∂V1 and ∂V2, as indicated in Figure 1:

C(x) (ph(x) + pa(x)) =

∫∫∫

V1

Tij
∂2G

∂yi∂yj

d3y−
∫∫

∂V1

(ph + pa)
∂G

∂n
d2y

+

∫∫∫

V2

Tij
∂2G

∂yi∂yj

d3y−
∫∫

∂V2

(ph + pa)
∂G

∂n
d2y (7)

Figure 1. Typical HVAC duct: collocation node (in red) and de�nition of the volumes V1 and V2. At the
collocation node, we decompose the wall pressure into a near-�eld component due to the scattering of
turbulence in V1, and the scattering of an acoustic component radiated by remote turbulence in V2.

The domain V1 is localized around the collocation point x, with dimensions proportional
to the local turbulence correlation length, i.e. acoustically compact at low Mach numbers. The
domain V2 is de�ned as V \ V1. It was argued above that the hydrodynamic pressure is solution
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of Eq. (6) with pL ' ph over the compact domain V1:

C(x) ph(x) =

∫∫∫

V1

Tij
∂2G

∂yi∂yj

d3y−
∫∫

∂V1

ph
∂G

∂n
d2y (8)

Subtracting Eq. (8) from Eq. (7) yields:

C(x) pa(x) = −
∫∫

∂V1

pa
∂G

∂n
d2y +

∫∫∫

V2

Tij
∂2G

∂yi∂yj

d3y−
∫∫

∂V2

(ph + pa)
∂G

∂n
d2y

= −
∫∫

∂V

pa
∂G

∂n
d2y +

∫∫∫

V2

Tij
∂2G

∂yi∂yj

d3y−
∫∫

∂V2

ph
∂G

∂n
d2y (9)

where the boundary integrals involving the acoustical pressure pa have been grouped together.
The wall pressure can therefore be expressed as the sum of a hydrodynamic component,

which can be obtained by an incompressible �ow model, and an acoustical component, solution
of Eq. (9). This integral implicit equation can be classically resolved using a boundary element
method, considering the two last integrals as an incident �eld. Once the acoustic component
of the wall pressure �eld has been obtained, it must be summed up with the hydrodynamic
component to yield the complete dipolar source term of Curle's analogy.

The formulation (9) has been implemented in the boundary element solver of the commer-
cial code SYSNOISE Rev 5.6, which was used to generate the results shown below. The details
of the implementation would be too lengthy to be included here, but an extensive description of
the basics and numerical implementation of the boundary element method can be found in [4].

3. RESULTS

The approach has been tested by application to a two-dimensional benchmark problem. We
consider the sound produced by the leapfrogging of two �lament vortices within an in�nite
two-dimensional straight duct. This benchmark permits a quasi-analytical derivation of the �ow
�eld and sound production.

3.1. Flow model and acoustic sources

The two vortices are initially placed at the centreline of a duct with unit height h, have a cir-
culation Γ = 85 m2 s−1, and are spaced in the longitudinal direction by a distance d = h/2.
The characteristic Mach number is therefore M = Γ/ (d c0) = 0.5 with a speed of sound
c0 = 340 m s−1.

The velocity of each vortex �lament is obtained analytically by derivation of the complex
potential associated with the two vortices and their respective in�nite rows of image vortices
due to the presence of the non-viscous walls. In this benchmark, we apply an incompressible
�ow model (pointwise Biot-Savart induction) to obtain the unsteady �ow �eld, which may be
questionable at a Mach number of 0.5. The error due to compressibility effects scales however
with the square of the Mach number [5]. Besides, the rational for using such large Mach number
is to obtain a �ow �eld radiating sound at frequencies above the cut-off frequency of the duct.

The positions of the two vortices at each time step are integrated using the ODE45 Runge-
Kutta solver of Matlab 6.5. In order to remove the velocity singularity at the centre of the
vortices, the velocity �eld over the whole duct section has been calculated by patching, at each
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time step, Oseen angular velocity distributions vθ = Γ/(2πr)
(
1− e−r2/(2 σ2)

)
, with a vortex

core size chosen equal to twice the mesh resolution (uniform in both x, y directions). It was
veri�ed that this desingularization of the vortex cores does not yield a signi�cant error in the
prediction of the sound production [6].

The unsteady velocity �elds have then been post-processed to calculate the Lighthill's
tensor Tij ' ρ0vivj in two-dimensions. The wall pressure has been obtained by applying the
unsteady Bernoulli's equation following the streamlines aligned with each wall from in�nity to
the source region. Both surface and line source terms have been Fourier-transformed for use in
the BEM solver of SYSNOISE Rev 5.6 The details about the derivations are given in full length
by Schram [6].

3.2. Sound prediction

Figure 2 below shows several acoustical results, for a frequency of 261 Hz (k h = 4.8). Fig-
ure 2(a) shows the sound pressure �eld obtained by using a tailored Green's function, according
to Eq. (3). The tailored Green's function is obtained on the basis of the duct modes, matched at
the source location, as shown by Schram [6]. This is considered as the reference, exact solution,
up to the approximations of the source �eld described above.

Figure 2(b) shows the sound prediction obtained using our innovative formulation (9).
While it was shown by Schram [7] that a straightforward application of Curle's classical analogy
yields completely erroneous results for this benchmark, it is now demonstrated that our method
yields excellent agreement with the reference data. A few discrepancies are found in the near
�eld of the source region, which can probably be attributed to the poor convergence of the
tailored Green's function, based on trigonometric functions, to represent the acoustic near-�eld.

Figure 2(c) shows the dipolar contribution to the total �eld of Figure 2(b), i.e. obtained
by applying (9) without the quadrupolar incident �eld. Similarly, Figure 2(d) shows the con-
tribution of the quadrupoles ρ0vivj only. We observe that the dipoles contribute only to ap-
proximately 1/5th of the total �eld, though the quadrupole only does not suf�ce by itself to
obtain the correct pressure pattern. The importance of the quadrupole contribution is to be re-
lated to the relatively high Mach number, making the source region substantially non-compact.
Moreover, the dipoles merely represent in this straight duct case the mirrored re�ections of the
quadrupoles, and have thus at most a similar acoustic ef�ciency. It is notorious that the dipole
contribution dominates the quadrupolar one for more complicated geometries, in presence of
geometrical features having small radius of curvature in comparison with the size of the turbu-
lence source [8], a fortiori at lower Mach numbers.

Finally, Figure 2(e) shows the acoustic �eld obtained by scattering the source of
Lighthill's Equation (1), i.e. the double divergence of Lighthill's tensor herein approximated
as ∂2ρ0vivj/∂xi∂xj and accordingly regarded as a monopole. This result displays an acous-
tic �eld having a four orders of magnitude error with respect to the reference simulation. This
highlights a fact already demonstrated many times: the dramatic fragility of the acoustic anal-
ogy when the correct multipole order is not imposed by the formulation. Though exact from a
formal viewpoint, Eq. (1) expresses the source as a distribution of monopoles, with the result
that numerical errors behave as monopoles as well and are therefore much more ef�cient ra-
diators than the desired quadrupole �eld known to remain as leading order once all the source
cancelations have been accounted for.
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(a) Using tailored Green's function.
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(b) Dipoles and quadrupoles using new formulation (9).
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(c) Dipolar contribution alone.
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(d) Quadrupolar contribution Tij alone.
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(e) Using monopole sources ∂2Tij/∂yi∂yj .

Figure 2. Sound pressure �eld obtained for a frequency of 261 Hz (k h = 4.8).
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4. CONCLUSIONS

An innovative approach, combining the Boundary Element Method with Curle's analogy, has
been implemented in the BEM solver of the commercial code SYSNOISE Rev 5.6. It has been
validated by application to a somewhat severe test case: the sound produced by the leapfrogging
of a vortex pair in an in�nite duct. The �ow model and acoustical response of the duct can be
derived quasi-analytically, leading to a reference sound prediction. The results obtained by our
new BEM/Curle approach show an excellent agreement with the reference calculation, for a
frequency above the cut-off frequency of the duct.

Another important conclusion is the spectacular failure of the analogy when considering
the source �eld as a distribution of monopoles. Though theoretically exact, the convolution of
this monopolar �eld with a free �eld Green's function yields errors in the acoustic prediction
having a monopolar order also. At the opposite, Curle's analogy enforces the correct radiation
ef�ciency of the volumetric source term, and yields an accurate prediction.

In summary, our method permits solving the acoustic propagation in geometries with ar-
bitrary extent and complexity, exploiting the computational ef�ciency of Curle's analogy. More-
over, our method allows using an incompressible model of the �ow �eld, which is a signi�cant
asset considering the stiffness issues faced by compressible �ow solvers at low Mach numbers.
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