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Abstract 
Detection of undesired machine tool vibrations during milling operations is an important task 
for manufacturing engineers. Monitoring of frequency spectra is an efficient tool of chatter 
detection since these spectra usually have a clear, systematic structure. However, for some 
special cases, stability of the cutting process cannot be assessed based purely on the frequency 
spectra due to the disturbing effect of the runout of the tool. In this paper, it is shown that the 
stability of these cases can be assessed by the analysis of the vibration signal instead of the 
frequency spectra. Theoretical results are confirmed by experimental cutting tests. 

1. INTRODUCTION 

Machine tool chatter is still a problem for the machining community. These violent vibrations 
of the machine tool are problematic since they result in a poor surface finish, cause large-
amplitude acoustic emissions, and can sometimes lead to tool failure. Therefore, it is highly 
important to detect the onset of these vibrations.  

An efficient tool for identifying machine tool chatter is the monitoring of the vibration 
frequencies during machining. For ideal milling operations, vibration frequencies have a well 
defined, special structure, and the identification of stable and unstable machining cases is 
clear and trivial [1]. However, in practice, several other effects arise that influence and 
sometimes destroy this nice structure. One of them is the runout that is the state of the milling 
cutter with rotational axis differing from the geometric one. Runout causes the chip load to be 
distributed unevenly among the cutting teeth and shifts the frequency content of the cutting 
force signal away from the tooth passing frequency towards the spindle rotational frequency 
[2-5]. In this case, the distinction between stable and unstable cuts is not always possible 
based purely on the frequency spectrum [6]. For instance, in the case of a tool with even 
number of cutting teeth, the period doubling (flip) chatter frequencies coincides with the 
harmonics of the tool rotational frequencies that are caused by the runout, thus, these period 
doubling cases cannot be distinguished from stable machining (see, e.g., [7]). In this paper, 
the analysis of the vibration signal is proposed in addition to frequency spectra monitoring in 
order to assess the stability of the cutting process for these problematical cases.  
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2. MECHANICAL MODELL 

The mechanical model of the milling operation with a compliant tool can be seen in Figure 1. 
The corresponding equation of motion reads 
 
 ( ))()()()()()( τ−−=++ tttattt p xxHKxxCxM &&& . (1) 
 
The vector x(t) contains the displacement of the tool tip in the x and y directions. The 
matrices M, C and K are the modal mass, damping and stiffness matrices, and ap is the axial 
depth of cut. The time delay is equal to the tooth passing period: )60/(NΩ=τ , where Ω is 
the spindle speed in rpm and N is the number of teeth of the miller. The elements of the 
directional force coefficient matrix H(t) are 
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where Kt and Kn are the tangential and normal cutting coefficients with ))(cos()( ttc jj ϕ=  and 

))(sin()( tts jj ϕ= . The angular position )(tjϕ  of the j th tooth is determined by the spindle 
speed Ω in the form Njttj /)1(260/2)( −+Ω= ππϕ . The function )(tg j  defines if the jth 
tooth is cutting or not 
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where eϕ  and aϕ  are the entry and exit angles of the cut.  
 

        
Figure 1. Milling operation and its mechanical model 
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The runout for each tooth is modelled by a single factor jρ . If there is no runout (i.e., 
1=jρ , Nj ,...,2,1= ), then matrix H(t) is periodic with the tooth passing period τ. In this 

case, the principal period of the system is equal to the time delay. This case corresponds to the 
conventional models of the milling process (see, e.g., [1, 8-10]).  

In practical milling processes, runout cannot be avoided, i.e., 1≠jρ , Nj ,...,2,1= . In 
this case, matrix H(t) is periodic with the tool rotation period τNT =Ω= /60 . Usually, the 
discrepancies between the location of the teeth and between the cutting forces acting on them 
are small. This explains that a τ-periodic cutting force variation assumption is usually a good 
approximation, in spite of the fact that it is actually T-periodic. Figure 2 shows the variation 
of the cutting force acting on the tool during machining with a two fluted miller. It can clearly 
be seen that the teeth experience different loads. The accompanied Power Spectral Density 
(PSD) diagram shows the additional frequency peaks at the multiples of the tool rotation 
frequency (1/T, 3/T, etc.). 
 

 
Figure 2. Cutting force and the corresponding PSD 

 

3. STABILITY AND CHATTER FREQUENCIES 

The vibrations of the tool can be decomposed into two parts as follows (see, e.g., [1] or [10]) 
 
 )()()( p ttt ξxx += , (7) 
 
where xp is the T-periodic component excited by the T-periodic cutting force, and ξ is the 
chatter component.  

For a stable operation, the chatter component is zero ( 0)( ≡tξ ), and the tool motion is 
described by the forced component xp only. Since the forcing is usually non-harmonic, the 
corresponding frequency spectra contains peaks at the multiples of the tool rotation frequency  
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Stability of the milling process can be estimated theoretically via the analysis of the 
variational system around the periodic motion xp. According to the Floquet theory of delayed 
differential equations [11], an infinite dimensional operator (monodromy operator) can be 
associated to the system. The eigenvalues of this operator, also called as characteristic 
multipliers or Floquet multipliers, describe the stability of the system. If all the characteristic 
multipliers are in modulus less than 1, then the system is asymptotically stable. Since the 
system has infinitely many characteristic multipliers, such stability calculations cannot be 
done in closed forms, but numerical approximations can be applied. Here, two methods are 
used, the semi-discretization method [12], and the time finite element method [9]. The basic 
point of both methods is that they provide a finite dimensional matrix approximation of the 
monodromy operator and the eigenvalues of this matrix can be determined numerically.  

Let us denote the critical (maximal in modulus) characteristic multiplier by 1µ . The 
corresponding characteristic root (also called characteristic exponent) is T/ln 11 µλ = . 
Clearly, the system is just on the stability limit, if 0Re 1 =λ , that is if ωλ i±=1 . According to 
the Floquet theory of periodic systems, the chatter component can be written as  
 
 tt ttt 11 e)(e)()( λλ ppξ += , (9) 
 
where )()( Ttt += pp  is a T-periodic function, and bar denotes complex conjugation. Fourier 
expansion of this periodic function with the substitution of ωλ i=1  gives 
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where Ck are complex coefficients. Thus, the chatter component can be written as  
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The exponents in (11) give the frequency content of the chatter motion in [rad/s]. The 
corresponding chatter frequencies in Hz are  
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Of course, only the positive frequencies have physical meaning. Here, we can distinguish 
among 3 different cases: 1) Quasi-periodic chatter; 2) Period 1 chatter; and 3) Period 2 
chatter. 

3.1 Quasi-periodic chatter 

The critical characteristic multiplier is a complex pair ( 11,µµ ) located on the unit circle: 
1|| 1 =µ . This type of stability loss corresponds to the secondary Hopf or Neimark-Sacker 

bifurcation of periodic systems that is topologically equivalent to the Hopf bifurcation of 
autonomous systems. In this case, quasi-periodic vibrations arise during the loss of stability. 
The corresponding chatter frequencies are 
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3.2 Period 1 chatter 

The critical characteristic multiplier is 11 =µ . This case corresponds to the period one 
bifurcation of periodic systems that is topologically equivalent to the saddle-node bifurcation 
of autonomous systems. In this case, the chatter frequencies are equal to the multiples of the 
spindle rotation frequency: 
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Note, that in the literature [1, 9-10], this case is referred to as period 2 (flip) chatter, since if 
the effect of runout is neglected, then the system is τ-periodic. However, if the runout is 
incorporated into the model, as it is in the current analysis, then the system is not τ-periodic 
but T-periodic, and, in mathematical sense, this type of instability is a period 1 instability.  

3.3 Period 2 chatter 

The critical characteristic multiplier is 11 −=µ . This case corresponds to the period two 
(period doubling or flip) bifurcation of periodic systems, and there is no topologically 
equivalent type of bifurcation for autonomous systems. In this case, the chatter frequencies 
are equal to the multiples plus a half of the spindle rotation frequency: 
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Note, again that this case is not the same as the period 2 instabilities in the literature [1, 9-10], 
since system (1) is in fact T-periodic due to the runout. 

4. EXPERIMENTAL RESULTS 

Cutting tests were performed on a 5-axis linear motor Ingersol machining center with a 
Fischer 40,000 rpm, 40 kW spindle. A 12.75 mm diameter, 106 mm overhang, carbide end 
mill was used during all stability tests. The modal parameters of the compliant tool are 
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Cutting coefficients in the tangential and normal directions were determined during separate 
cutting tests on a Kistler Model 9255B rigid dynamometer. An aluminum 7050-T7451 block 
was down-milled at a 5% radial immersion and a feedrate of 0.127 mm/tooth. The estimated 
cutting coefficients for the given material were Kt=536 N/mm2, Kn=1.87 N/mm2. The spindle 
speed Ω and depth of cut ap were changed for each cutting test to determine the onset of 
unstable vibrations. The runout parameters were estimated based on the cutting forces acting 
on the different teeth (see Figure 2): 9.01 =ρ , 1.12 =ρ . 
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The top left panel of Figure 3 presents the stability chart in the plane of spindle speed 
and depth of cut. Thick lines denote theoretical stability boundaries. Stable and unstable 
cutting tests are denoted by circles and by crosses, respectively, and limit cases are denoted by 
+ signs.  

The bottom left panel shows the theoretically predicted frequency diagram computed 
from the critical characteristic multipliers. Dashed lines denote the multiples of the tool 
rotation frequency. Four different parameter points were investigated:  

- point P: stable cutting, 
- point Q: period 2 chatter, 
- point R: quasi-periodic chatter, 
- point S: period 1 chatter. 

Multiples of the tool rotation frequency are denoted by a circle for all the four points P, Q, R 
and S, these forcing frequencies are always present in the system, even in the case of stable 
machining. In the period 2 case (point Q), chatter frequencies are denoted by diamonds. In the 
quasi-periodic case (point R), chatter frequencies are denoted by squares. In the period 1 case 
(point S), chatter frequencies are denoted by triangles. Black filled markers denote the 
frequencies caused by the runout of the tool (see [6]). 
Right panels of Figure 3 present the power spectra corresponding to cutting tests at points P, 
Q, R and S. Circles, squares, diamonds and triangles denote the tool rotation frequencies, the 
quasi-periodic frequencies, the period 2 frequencies and period 1 frequencies, respectively. It 
can be seen that the structure of the PSD diagram is in good agreement with the theoretically 
predicted frequencies.  
 

 
 

Figure 3. Stability chart and the corresponding vibrations frequencies 
 
In the period 2 (point Q) and quasi-periodic (point R) cases, the presence of chatter can 

clearly be asses based on frequency diagram. In the case of period 1 chatter, the chatter 
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frequencies coincides with the harmonics of the tool rotation frequency, resulting in a spectra 
that is qualitatively identical to the spectra of stable machining (see point P). Therefore, for 
period 1 case, the presence of chatter cannot be detected based on the frequency spectra. In 
order to overcome this problem, the vibration signals and Poincaré sections should be 
analysed directly, since they contain more information than the frequency spectra, e.g., the 
structure of the Poincaré sections clearly refers to the dynamic behaviour of the system (see, 
e.g., [10, 13, 14]).  

Figure 4. shows the 1/ τ  sampled time history of the vibrations and the corresponding 
Poincaré sections for both the stable (point P) and the period 1 (point S) cases. Note that the 
sampling is equal to the tooth passing period τ and not the tool rotation period T. Every 
second sampling is denoted by grey colour. This way, grey colour refers to position of the tool 
when tooth 1 is in the cut, while black colour refers to the position of the tool when tooth 2 is 
cutting. It can clearly be seen that in the stable case, the position of the tool is almost the same 
at each 1/τ sampling. This small difference is caused by the different load acting on the 
different teeth, e.g., by the runout of the tool. In the period 1 case, this difference is more 
significant, one of the teeth (black) experiences essentially larger load than the other (grey). 
This is caused by the period 1 chatter (that is called period 2 in the literature [1, 9-10]). This 
difference is more obvious in the Poincaré sections. In the stable case, the grey and black 
points are very close to each other, while in the period 1 case, they clearly separate.  
 

 
Figure 4. Vibration signal for the stable and the period 1 cases 

6. CONCLUSIONS 

Detection of machine tool chatter was investigated in the case of cutter runout based on 
frequency spectra and vibrations signals. It is known that the frequency spectra cannot be used 
to identify chatter in all cases due to the disturbance caused by the runout as it follows from 
the Floquet theory of time periodic delay differential equations. It was shown that for these 
cases, the vibration signal and the corresponding Poincaré sections can be used in order to 
asses the stability of the operation. The analysis was demonstrated for a milling operation 
with a two fluted tool and the results were verified experimentally.  
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