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Abstract 
 
Translational Symmetry permits a time invariant matrix (a Ring Matrix) of a time series to be 
formed. Traditional Eigenvalue/vector and Fast Fourier Transform techniques applied to the 
Ring Matrix provide views of all the vibration modes, their magnitude and frequency content. 

The Ring Matrix has many interesting features associated with it that enable it to be 
used as an additional tool in defining the ‘condition state’ of a bearing. 

This paper introduces the Ring Matrix as a significant step in the ‘Blind’ de-
convolution process. Application of the de-convolution method to vibration data obtained 
from both a large and small slow speed (1 to 4rpm) slew bearing is presented.  

The Ring Matrix is being applied to the condition monitoring of a bearing which 
forms part of an experimental test rig specifically built to monitor slow speed (1 rpm) slew 
bearings with a view to predicting their remaining useful life.  

Results, from a Coal Reclaimer which has slow speed (4rpm) slew bearings, are also 
presented to illustrate the various views of the vibration information. 

1. INTRODUCTION 

Machine condition assessment of slow-speed slew-bearings has generally been unsuccessful 
using vibration data. There are a number of reasons for this. Primarily, the very slow speeds 
involved (1 - 4 rpm) lead to very low rotational energy release. The motion of a slew bearing 
is often intermittent and non cyclic. Power spectra obtained via Fast Fourier Transform 
methods in combination with Demodulation methods and various filter techniques, are usually 
the only analysis techniques employed as they are non intrusive methods that will show up 
problems if they present as vibrations.  

The data we will present comes from a large Coal Reclaimer slew bearing and a small 
slew bearing undergoing ‘run to failure’ testing on an experimental test-rig. These slew 
bearings contain two horizontal and one vertical row of cylindrical roller bearings. The Coal 
Reclaimer has two vertically mounted slew bearings (4.2m dia.) supporting the reclaiming 
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buckets which rotate at approximately 4.5 rpm in one direction in a continuous mode. The 
slew bearing (0.3m dia.) in the test-rig is horizontally mounted and can operate in the speed 
range 1 to 10 rpm. The test-rig data presented in this paper is at 1 rpm. 

Current condition monitoring methods applied to the Coal Reclaimer provide a sample 
of data that is short in duration containing a few thousand samples (4098 max) at 240 samples 
per second. The test rig provides 125,000 samples per channel per time block at 16 bit data 
resolution over the range of 2K-2M samples per second. 

2. NOMENCLATURE 

The following describes the notation adopted for this paper.  
∞ All vectors are in lower case.  
∞ All matrices are in upper case.  
∞ > indicates a left to right direction. 
∞  < indicates a right to left direction. 
∞  o  indicates the matrix is a ring matrix. 
∞  p  indicates the horizontal direction andq  indicates the vertical direction. 

3. DE-CONVOLUTION 

Convolution [1] is defined as ’coiling, twisting; fold, twist’.  De-convolution can be defined 
as the reverse, that is, to uncoil, untwist, and unfold. The mathematical representation for 
convolution is essentially an asterisk operator ZYX ⇒∗  where YX ,  are the source items to 
convolve and Z is our result or set of observations. The asterisk operator usually involves a 
folding, shifting, multiplication and finally a summation. This series of operations act like a 
sweeping filter. De-convolution is an inverse filtering process which identifies 
the VZYX ∗⇒⇐∗ λ   where λ  is a vector of characteristic values such that each value 

q
λ  

is associated with a fundamental function described by the vector Vp ∈υ where there are 
p vectors and q characteristic values. De-convolution is not the same as de-composition. De-

convolution is a process that employs multiplication whereas decomposition is a process that 
employs subtraction. De-convolution is associated with a variety of methods called Blind 
Source Separation (BSS) [1, 2, 3], Independent Component Analysis (ICA) [4], Mean Field 
Independent Component Analysis (MFICA) [5] and Principal Component Analysis (PCA) 
[6]. 

In this paper we outline a method for finding VZ ∗⇒ λ  where our known set of 
observations is Z . 

The difficulty is in defining the matrix Z  which is a valid representation of the system 
given that all we know is the sensor output data. Our approach is to identify an invariant 
matrix that contains all the known information. For the moment we have to be content with 
the possibility of finding as many source functions as there are data points. We discuss this 
issue later when we identify the principal eigenvalues (components). 
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4. RING MATRIX 

Initially for simplicity, we will discuss a dataset
321

,, xxxx =
>

. Note that all datasets have a 
beginning and an end. If we treat the dataset as a piece of string and join the ends we create a 
loop or ring as in Figure 1.  

 
Figure1. Data string to invariant topology. 

 
This operation on a dataset provides a mechanism for point of view invariance [7] which 

allows us to form a Ring Matrix 
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reverse Ring Matrix has the form
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. The Ring Matrix has the topology of a 

torus. These matrices
0>
X , 

0<
X  are symmetric (Hermitian) [9], that is the matrix is symmetric 

about the forward diagonal. The Ring Matrix 
0>
X is an invariant matrix form where o indicates 

the Ring form. 

So far we have defined a Ring Matrix for a sequence
>
x =

1
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x ,

3
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consecutive entry is lag 1=l . If  2=l , 
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x  ,
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State (phase) space methods for time-series data [10, 11, 12, 13] involve embedded length 

groupings of L,,,
2lilii

xxxx ++

>
= for 1...2,1,0 −== nmi where the lag 1=l  or 2 or 

3 1... −= nm . The Ring Matrix can also contain these groupings but it does so in a form that is 
time invariant. Therefore we can say that the ring matrix of a n  length time-series is time 
invariant for any lag 1≥< nl .We can define any n n×  ring matrix from an n  length dataset 
with a lag 1≥< nl . 

The data in the matrix may or may not come from a previously transformed or filtered 
dataset. All the results in this paper are associated with unfiltered data. 
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5. EIGENVALUES AND EIGENVECTORS 

It follows from [14] that if a Ring Matrix 
0>
X  is Hermitian then the eigenvalues of 

0>
X  are real. 

The characteristic equation of the data 
>
x  can be determined via the eigenvalues of the Ring 

Matrix
0>
X . The eigenvectors of 

0>
X associated with the distinct eigenvalues are mutually 

orthogonal vectors. 
We know the matrix is invariant since the sum of the elements of each row is the same 

as the sum of elements of each column. If we assume that 
0>
X  forms a homogeneous linear 

algebraic system of equations 0

0

=
>>
yX  where we wish to solve for

>
y . We can recast 

>>>>





 −== yIXyX λ
00

0  where λ  is the eigenvalue or characteristic value, 
>
y  is the eigenvector 

and I is the unit matrix. This is the standard eigenvalue/vector formulation. 

Now for every observation in the set 
>
x  there will be a corresponding eigenvalue and 

eigenvector. 
 Figure 2 is the eigenvalues; sorted into principal components, for a time instance of 

the Coal Reclaimer. Figure 3 is a small sample of the first two principal eigenvectors for the 
same time instance of the Coal Reclaimer. The principal eigenvector (eigen-mode) is the 
eigenvector multiplied by its associated principal eigenvalue. 

 
Figure2. 

0>
X Acceleration eigenvalue versus eigennumber at 01/05/2003 for the Coal Reclaimer 

 

Figure 3. 
0>
X  First 2 Principal Acceleration Eigenvectors at 01/05/2003 for the Coal Reclaimer 
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 It should be appreciated that finding the eigenvalues/eigenvectors is essentially a 
filtering operation. The data has been radically transformed. Discussions [15, 16] about how 
many of these eigenvalues are significant leads to a general rule where 80 % of the eigenvalue 
variance is explained by the principal components. We shall call this value

lower
n . In structures 

containing many independent geometric elements we know that there are more ‘active’ 
components than there are principal components. For example in slew bearings there are often 
300-400 rollers. Knowledge of this number,

upper
n , gives us an upper bound on the number of 

eigenvalues. We know there are not likely to be any more because this represents the 
maximum number of possible forcing functions that could be active on and within the 
bearing.  

In vibration analysis we usually restrict our immediate interest to the first 10 principal 
components. If we identify a particular bearing fault frequency in the eigenvectors of these 
first 10 principal components then we should have some cause for concern. 

By multiplying the sorted eigenvalues by their respective eigenvectors; which have the 
same time axis as the measured signal, we can display the Fast Fourier frequencies (FFT) in 
each principal mode. Finding the Fourier frequencies is also a further filtering operation 
which may or may not be desirable. For example we have to be particularly cautious about 
filtering low amplitude, non-cyclic vibrations that typically emanate from slow speed slew 
bearings. 

6. FREQUENCY BY EIGEN-MODE  

Figures 4, 5, 6 and 7 are the frequency and magnitudes for each eigen-mode for the 
first 1000 data points in each dataset. The computed frequencies are placed into a hierarchy of 
importance. The dominant eigen-modes are indicated from right to left. The power in each 
frequency is indicated by the colour scale at the right hand side of the image. As a rule, red is 
on the right hand side and dark blue is on the left hand side. 

 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

6 

Figure4. Coal Reclaimer 
>
x  Acceleration frequency, eigen-mode, RMS Power at 01/05/2003 

 

 Figure5. Coal Reclaimer
>
x  Acceleration frequency, eigen-mode, RMS Power at 28/07/2006 

 
We limit the number of eigen-modes to the 100 dominant modes. This makes it easier 

to track a frequency of special interest across different time-series. 
Figures 4 and 5; for the Coal Reclaimer, cover the frequency range 0-120Hz and 

represent the change over approximately 3 years. Figure 4 indicates that the fault frequency of 
interest (2 Hz) occurs at eigen-mode 43. Figure 5 shows that this frequency occurs in eigen-
mode 59 and 61. However another dominant frequency has occurred at 110Hz. This indicates 
that the bearing is still good for service as a bearing fault frequency is not dominant. 

For the test-rig, Figures 6 and 7 cover the frequency range 0-300kHz and represent the 
change over an equivalent simulated production period of 300 days. 
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Figure6. Test-rig channel 1,
>
x  Acceleration frequency, eigen-mode, RMS Power at 

016/02/2007 

 

Figure7. Test-rig channel 1,
>
x  Acceleration frequency, eigen-mode, RMS Power at 

21/02/2007 
 
Figure 6 and 7 show that low frequencies (approx.10Hz) are dominant. These have 

been identified and are not fault frequencies. Figure 6 illustrates a bearing that has only 
recently been put into service. 

 An ‘ideal’ system would contain very few frequencies and the frequencies would 
have low power such that the state-space diagram would resemble a small well defined ‘tight’ 
ball shape. Over time; under load, the state-space diagram would become less well defined. 
The ‘tight ball’ would become a ‘fuzzy ball’. This ‘fuzziness’ is associated with an increase in 
the frequencies of the vibration waveform. As we see in Figure 7 we have an increase in the 
occurrence of higher frequency waves which indicates that some wear is progressing. These 
ultrasonic frequencies are typically caused by scuffing of the rollers and or subsurface 
deformations of the roller and/or raceway metals. To obtain a better definition of the low 
frequencies requires sampling at a lower frequency. 

 In general if a fault frequency is contained in the first few eigen-modes then it is 
definitely time to take action. This action may be to replace the bearing or it may be the 
removal of a possible external forcing function creating the ‘fault’ frequency. At the present 
time, the de-convolution process does not identify whether the ‘fault’ is internal or external. 
To identify this effect requires a different analysis. 

7. CONCLUSIONS  

Any time-series can be de-convolved by placing the data into the Ring Matrix form. Any data 
can be placed into a Ring Matrix form. The Ring Matrix is not a filtering mechanism. The 
formation of a Ring Matrix, which is essentially an outcome of translation symmetry, 
provides us a ‘point of view’ invariant structure that enables the eigenvalues and eigenvectors 
representing the data to be determined. 
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The number of principal components represents a lower bound on the eigenvalue set. 
The number of known independent geometric components represents an upper bound on the 
eigenvalue set. Subsequent processing of the eigenvalues and eigenvectors allows us to 
identify the frequencies contained in each fundamental mode and their magnitude can be 
displayed. 

The significance of theoretical fault frequencies can be indicated by monitoring their 
eigen-mode. The lower the eigen-mode the more severe/important the fault becomes. 

Based on the analysis outlined in this paper both the Coal Reclaimer and test-rig 
bearings are still fundamentally sound.  
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