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Abstract 
 
Traditional signal analysis methods appear to fail in their ability to provide consistent 
meaningful information when presented with data from large slow moving slew bearings. A 
number of reasons for this are presented. Statistics obtained from vibration data collected 
from a large Coal Reclaimer and an experimental test-rig is discussed. The Coal Reclaimer 
rotates at 4.3 rpm about two vertically mounted, large, slew bearings. The experimental test-
rig rotates at 1 rpm in the horizontal plane. These statistics are compared to the results 
obtained using a simple event detection algorithm. The event detection algorithm is detailed 
and its strengths discussed relative to other methods. It is found that the event detection 
method provides a consistent statistical view of the condition of the slew bearing but not 
necessarily better than simple statistical measures. The event detection algorithm is now being 
used as a condition monitoring tool on the test-rig designed to specifically condition monitor 
horizontally mounted slow speed (1 rpm) bearings to failure. 

1. INTRODUCTION 

The use of vibration data from slow-speed slew-bearings has been notoriously unsuccessful in 
predicting bearing failure. There are a number of reasons for this. Primarily, the very slow 
speeds involved (1 - 4 rpm) lead to very low rotational energy release. The operation of a slew 
bearing is often intermittent and non-cyclic. The data used in this paper is from a Coal 
Reclaimer and an experimental test-rig. The Coal Reclaimer has 2 large (4.2m diameter), 
vertically mounted, slew bearings supporting the reclaiming buckets and rotates at 
approximately 4.3 rpm in one direction in a continuous mode. The test-rig slew bearing is 
horizontally mounted, small (0.3m diameter) and rotates nominally at 1 rpm under a 15 tonne 
load. 

Current condition monitoring methods for the Coal Reclaimer provide a short sample 
(4098 max) of acceleration data at 240samples/sec.  Data from the test-rig can be sampled 
across a broad frequency range from 1 to10million samples/sec. The ICP type piezoelectric 
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accelerometers used on the Coal Reclaimer and the test-rig are from the same manufacturer 
with the same frequency response characteristics. 

Demodulation/Fourier type data analyses of vibration from slew bearings have been 
unsuccessful in determining the useful life and /or time to replace. After examining some 
thirty different statistics for the history of raw acceleration data obtained from the Bridge 
Reclaimer we obtained no statistic that produced a significant trend. This result forced us to 
consider the use of acoustic emission methods and in particular the simple idea of an event. 

 The definition of the term ‘event’ as used in this paper is ‘a thing that happens; a 
result, an outcome that includes measured events and or calculated events from measured 
events’. The science of Acoustic Emission is primarily concerned with the measurement of 
ultrasonic events and their categorisation [1]. Pollock [2] says ‘Acoustic Emissions are the 
stress waves produced by sudden movement in stressed materials. The classic sources of 
acoustic emissions are defect related deformation processes such as crack growth and plastic 
deformation.’ He goes on to say ‘The source of the acoustic emission energy is the elastic 
field in the material’. In acoustic emission the term ‘ringdown counts’ is a dominant measure. 
Tandon and Choudhury [3] say ‘Ringdown counts involve counting the number of times the 
amplitude exceeds a preset voltage level (threshold level) in a given time’. They go on to say 
‘An event consists of a group of ringdown counts and signifies a transient wave’.  Choudhury 
and Tandon [4] say ‘The method of ringdown counts has been found to be a very good 
parameter for the detection of defects in both the inner race and roller of the bearings tested’. 
They go on to say ‘that as the defect size increases, more events are emitted with higher 
values of peak amplitude and ringdown counts’. However, they qualify these results by stating 
‘emission has not been detected for some cases of good bearings running at low speeds of 100 
and 250 rpm’ which of course is a highly desirable result. In this paper we are dealing with 
bearings at 1 to 4.3 rpm which raises the likelihood of extremely low acoustic emissions 
and/or no significant change at all. 

In this work we count the number of times a threshold is reached and or exceeded 
within a fixed length dataset. We introduce two operators that extract an amplified view of the 
events embedded in any data. The algorithm to produce the event statistics is outlined and we 
then illustrate the use of these operators on raw acceleration data obtained from both the 
machines previously described. 

2. EVENTS 

Every element of a dataset can be considered to be an event. We require a means of 
categorising each event. This is usually done by examining the value of the element and 
placing the value in a bin (a memory location) that represents the value. This can be done 
quite easily given that we have defined a bin to receive the value. Defining the bins to receive 
the value is the problem. If the number of bins is too large then some of the bins will be empty 
and if the number of bins is too small we may miss out on some subtle change that has taken 
place at some value level and the effect is absorbed along with values less than or greater  
than the value itself. This is typically what happens in statistical analysis. The user has to 
define a range of values and the number of bins based on some fixed interval that represents 
the range. Although there are two main methods that we employ, we briefly describe one of 
them as it is quite simple. 

Initially, we find the maximum and minimum of our data and decide if the data is best 
described in one of the following rules in Table 1. We assume that the data x  takes both 
positive and negative values and in our case because we are measuring acceleration; either in 
g’s or milli-Volts (mV), we restrict the maximum to a value of 1000.0 as we do not normally 
detect values above this range in operating conditions on slow speed slew bearings. Notice in 
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Table 1 that we also adopt a variable number of bins (steps) depending on the category that 
the top value finds a match. Note also that all the bins take a positive value. That is, we 
establish the absolute maximum value and define the categorization rule. 

Rule If abs(max (value)) steps comment 
1 >0.001 and <=0.01 100 0 to 0.01 in steps of 0.0001 
2 >0.01 and <=0.1 100 0 to 0.1 in steps of 0.001 
3 >0.1 and <=1.0 100 0 to 1 in steps of 0.01 
4 >1.0 and <=10.0 100 0 to 10 in steps of 0.1 
5 >10.0 and <=1000.0 1000 0 to 1000 in steps of 1 

 
Table 1. Categorisation rules. 

 
 Now that we have our events all categorised into bins we can calculate the fraction of all 
events (or probability of an event) taking that binned value. 

We will now discuss some operators that allow us to take a particular view of the data 
other than the raw values. 

3. EMBEDDED EVENTS 

 It is implicit that we are looking at the data x  from start to finish in event order. Within x  is 
a range of events from slow (low frequency) to very fast events (high frequency). We now 
describe a very simple novel transformation that highlights all the short duration events s  that 
are contained in a n  length dataset x . We deliberately do not consider the concept of time in 
the definitions as these transforms also apply to data that is not sampled at recorded time 
intervals. More generally the approach is based on an event precedence paradigm. That is, this 
event occurred before that event. The quantity being measured has no impact on the 
paradigm. 

We define stability as, the amplification of change in the neighbourhood of an observer. 
The observer in a one dimensional space can have, at most, a neighbour on the left and on the 
right. From this we define stability as uvs =  where )( 1 ii

xxu −= +  and )( 12 ++ −=
ii
xxv  

for 1...2,1,0 −== nmi . Bothu and v  are changes that when multiplied amplify or attenuate 
the raw data. If the object x is given a unit of mass, v  and u can be considered as representing 
momenta. From this Newtonian description we obtain a related ‘cousin’, the work done of x  
defined as )(5.0 22

uvw −= . For most purposes we can ignore the factor 0.5. It is interesting 
to note these two operators s and w  are related via the complex number iuvz +=  
where 1−=i . The units of the measures are to the power two, like energy. Hence mV 
transforms to mV² and g transforms to g². 

The operators s and w  behave like high pass non-linear filters in the time/frequency 
domain. 

 
 

Figure 1. x Time-series.               Figure 2.  s Time-series.                Figure 3. w Time-series. 
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Figures 1, 2 and 3 are short samples (1000) of the time domain for the raw signal x , 

s and w  and illustrate the highlighting of events that occurs with these transforms. Notice 
how more distinct the data becomes. These transforms extract the very fast significant events 
from all the slowly changing data.  

4. THRESHOLD COUNTS 

For the same particular dataset x  we can produce counts for the various threshold categories 
defined in Table 1. Figures 4, 5 and 6 all represent the data from the experimental test-rig 
slew bearing at the beginning of its useful life. The thresholds are in units of mV or mV². 

 
  Figure 4. x Thresholds                   Figure 5.  s Thresholds                  Figure 6. w Thresholds 

 versus counts.                                   versus  counts.                               versus counts. 
 

Note the relative insensitivity of the plot for the raw data x  (Figure 4) compared to s and 
w (Figures 5 and 6). Both s  and w  give very similar results demonstrating their close 
relationship.  

5. THRESHOLDS COUNTS AND HISTORY 

5.1 Ultrasonic (≥20kHz) 
We now examine the collection of datasets obtained over a period of 2 months from the 

test-rig and plot the combinations of threshold versus counts to produce Figures 7, 8. Figure 7 
displays the history of counts at a threshold of 10 mV. Similarly Figure 8 displays the history 
of counts at a threshold of 15 mV. Note that the threshold level to adopt for evaluating the 
future performance of the bearing is very sensitive.  

 
Figure 7.  x threshold=10mV.                               Figure 8. x threshold=15mV. 

Date versus counts.                                                 Date versus counts. 
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If we adopt the lower threshold (10) then we could say that the bearing started to exhibit 
increased vibration activity at approximately half way through the first month of its life. If we 
adopt the higher threshold (15) then we could say that the increase in bearing vibration 
activity started at approximately half way through the second month of its life. This is very 
significant for bearing life prediction. As an example, this gap of 1 month on the experimental 
test-rig equates to 4.7 years of actual life on a continuous casting machine operating under 
equivalent conditions. 

We need to find an indicator that is robust and relatively insensitive to the threshold 
level. When we plot w  (Figures 9, 10) we see that a larger range of thresholds (15mV², 
45mV²) essentially indicates that the bearing started to become ‘active’ at approximately half 
way through the first month in both instances. 

 
Figure 9.w threshold =15mV².                                  Figure 10.w threshold=45mV². 

Date versus counts.                                                    Date versus counts. 
 

When we plot s  (Figures 11) we note Figure 10 is similar to Figure 11. Secondly, a larger 
threshold (= 50mV²) again indicates that the bearing started to become ‘active’ at 
approximately half way through the first month. 

 
Figure 11. s threshold=50mV². 

Date versus counts. 

Now the accelerometer used is a 100mV/g device and consequently for a threshold
>
s  = 50mV² = 

0.0004998 (g²). 
 
5.2 Sonic(<20kHz) 

We now turn our attention to the datasets collected at sonic sampling rates from a large 
bearing on the Bridge Reclaimer. Figures 12, 13 and 14 are the event count histories of the 
acceleration x , the w  transform and s  transform. Figure 12 indicates that x  is a poor 
indicator although it does indicate that towards the most recent end of the history the bearing 
was changing significantly.  
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Figure 12. x threshold =0.01g. Date versus  counts. 

 
However, both the w  transform and s  transform indicate that the bearing started to 

experience problems much earlier. Interestingly the w  transform says at February 2005 the 
bearing started to get more active and the s transform goes one better by saying that the 
bearing started to get more active in June 2004. The difference of 8 months is significant 
suggesting that the s  transform is a prime candidate for indicating when a replacement 
bearing should be ordered. 

   

 
Figure 13. w threshold=0.0005g².                              Figure 14. s threshold=0.0005g². 

Date versus counts.                                                   Date versus counts. 
 

When we compare the t.wo different bearings, Figure 11 and Figure 14, you may note that 
Figure 14 is significantly more irregular. It is our suspicion that this effect is due to the large 
differences in the sampling rates and the number of samples as well as the operating 
environment which is considerably more exposed to active vibration sources than the test rig. 

6. OTHER STATISTICS 

There are many possible indicators that may also be useful in determining the end state of a 
slow speed slew bearing. For any statistic to be useful we require it to be able to indicate 
consistent changes throughout the life of a bearing. We are also required to establish an ‘end 
of life’ value. This is similar to the ‘end of life’ for event counts that still needs to be 
established. Initially, we briefly discuss the statistics of the ‘raw’ acceleration x  off the 
experimental test-rig. From every dataset we calculate 30+ different statistics. One of the 
most promising is the mean higher order autocorrelation [6] of a signal x  defined 

as )(/1 1

2
1

0

2

1 +

−=

=
+ −= ∑ ii

ni

i

iixx
xxxxabsnA  ‘which measures time asymmetry, a strong signature of 

nonlinearity’. Figure 15 indicates that quite a reasonable ( 7169.0
2 =R ) second order 

polynomial can be fitted to the raw data. The 2
R is an indicator of how well the model fits the 

data (e.g., a 2
R  close to 1.0 indicates that the model accounts for almost all of the variability 

in the respective variables). 
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the higher order autocorrelation signal  history for Slew Bearing Test-rig
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Figure 15. Mean higher autocorrelation of x  versus Date. 

 
 A much weaker candidate appears to be the sum of absolute values of the signal x  defined 

as )(
1

0

∑
−=

=
=

ni

i

ix
xabsS . Notice the much lower 4115.0

2 =R in Figure 16. 

 Sum of the absolute values of Raw acceleration x for Slew 
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         Figure 16. Sum of absolute values of  x  versus Date. 

 
These potential indicators show considerable instability. This detracts from their ability 

to provide a confident prediction ( a low R²). However, we can transform x  into w  or s or 
some other time series via various filters. There is no shortage of possibilities. When we 
transform the data using the stability transform we obtain an improved result using the sum of 

the absolute stability values )(
1

0

∑
−=

=
=

ni

i

is
sabsS  . In Figure 17 we achieve a 8416.0

2 =R .  

Sum of the Absolute values of Stability (S=u.v) for Slewbearing Test-rig
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Figure 17. Sum of the absolute values of s  versus Date. 

 

 Using the mean higher order autocorrelation )(/1 1

2
1

0

2

1 +

−=

=
+ −= ∑ ii

ni

i

iiss
ssssabsnA we obtain 

a second order fit with 7255.0
2 =R (see Figure 18). This appears to be inferior to the sum of 

the absolute stability value. 
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the higer order autocorrelation of Stability signal S=u.v for Slew Bearing 
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           Figure 18.  Mean higher autocorrelation of s versus Date. 

7. CONCLUSIONS 

Event count detection is a simple measure of bearing activity both in the sonic and ultrasonic 
vibration frequency ranges. Event counts are not yet established to be superior to simple 
statistics. 

Both the w  transform and s  transform are superior to x ; the raw acceleration data, in 
enabling the prediction of bearing behaviour. The stability transform s  provides the earliest 
indicator of unstable bearing behaviour. The s  transform will be used as one of the primary 
indicators for bearing life estimates on the experimental test-rig.  

The threshold to use for the test-rig is 50mV 2 =0.0004998 g 2 . The threshold to use for 
the Bridge Reclaimer is 0.0005 g 2 .These two thresholds are essentially the same indicating 
that 0.0005 g 2  is perhaps a good value to use for all very slow speed slew bearings. 

It remains to establish the acceptable level of event counts that indicate a slew bearing 
should be replaced. The intention of the experimental test-rig is to establish this. 

The statistic, the sum of absolute values of the stability s , appears to offer the most 
stable; second order polynomial, bearing behaviour indicator. This statistic may also enable a 
bearing replacement strategy. 

It still remains to establish acceptable ‘end of life’ vibration levels for a slew bearing. 
This is the goal for the experimental slew bearing test-rig. 
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