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Abstract

This paper is concerned with the problem of detecting movingtargets using active sonar. We
study a promising class of waveform, the Rational Orthogonal Wavelets (ROWs), designed to be
tolerant of multipath Doppler spreading. Recent work in communication has shown that ROWs
are effective even on severely spread channels. We apply ROWs for the first time to target
detection. ROW pulses are compared to conventional CW and LFM pulses via simulations
involving a high–speed target in shallow water. The target is point–like, and ray tracing is used
to synthesize Doppler–shifted multipath arrivals in a range–independent environment. The key
feature of ROWs that we exploit is the orthogonality they maintain over a wide range of delays
and Doppler scales. Thus the maximum–likelihood detector is a simple average of matched
filters, and the statistics of the detector under the null hypothesis are known, permitting CFAR
operation. In addition, a fast algorithm resulting in rational scaled filter banks is available.

1. INTRODUCTION

The fourth–generation (4G) cellular communication systemis the next major mobile phone
standard [1]. 4G is predicted to deliver rich multimedia content at a nominal rate of 100 Mbps
in outdoor environments, providing users with features such as mobile TV [2]. Multipath inter-
ference and Doppler spreading are significant problems to beaddressed by 4G system designers,
as users receive broadband content at highway speeds and in urban areas. In recent work a new
class of signalling waveform, the Rational Orthogonal Wavelet (ROW), showed promise in mit-
igating severe multipath Doppler spreading by adding an extra dimension of diversity, this being
the set of dominant eigenrays in the multipath channel [3]. This paper explores the use of ROWs
in the detection of targets in shallow water, a problem that also suffers from multipath Doppler.
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The remainder of this paper is organised as follows. In section 2 we introduce the ROWs
and give some of their properties. Section3 describes the time series simulations. Section4
describes the results, giving Receiver Operating Characteristic (ROC) data to compare the ROW
pulses against conventional CW and LFM pulses.

2. RATIONAL ORTHOGONAL WAVELETS

A Complex Rational Orthogonal Wavelet (CROW) is a complex functionψ+(t) = ψ(t) + iψ̂(t),
whereψ(t) is a Real Rational Orthogonal Wavelet (RROW) andψ̂(t) is the Hilbert transform
of ψ(t) [3, 4]. ψ(t) andψ̂(t) are real functions of timet, andψ+(t) is thus an analytic signal,
with frequency spectrum
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The definition (2) provides a family of RROWs,{ψq (t)} say, indexed byq ∈ {1, 2, ...}. Func-
tion β(x) = x4 (35− 84x+ 70x2 − 20x3) is used to ensureψ(t) decays smoothly and rapidly
away fromt = 0 [3]. The angular frequency markersω1, ω2 andω3 in (2) are given by

ω1 = 2q2 (2q + 1)−1
π, (3)

ω2 = aω1 = 2q (q + 1) (2q + 1)−1
π, and (4)

ω3 = aω2 = 2 (q + 1)2 (2q + 1)−1
π, (5)

wherea = 1 + (1/q) is a rational dilation factor. Sinceω3 − ω1 = 2π, Ψ(ω) has support on
{ω : −ω3 ≤ ω ≤ −ω1} ∪ {ω : ω1 ≤ ω ≤ ω3}, andψ(t) therefore has support over allt ∈ R. In
practice, however, the construction functionβ(x) ensures thatψ(t) decays rapidly for large|t|,
andψ(t) is effectively limited tot ∈ [−8, 8].

Figure1 displays the first four RROWs and their frequency spectra, where each wavelet
is normalized to have maximum amplitude unity. Note thatΨ(ω) has Hermitian symmetry
(Ψ(−ω) = Ψ∗(ω)) so that we need only display and work with the positive portion of the spec-
tral support,{ω : ω1 ≤ ω ≤ ω3}.

Consider the collection of complex functions

ψ+,kl(t) =
ak/2

√
2
ψ+

(

akt− lq
)

, k, l ∈ Z. (6)

These functions are scaled and delayed replicas of the CROWψ+(t), and{ψ+,kl(t)} forms an
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Figure 1. Time series and frequency spectra of the first four RROWs. The upper figures show the time
series, normalized to unit amplitude and overt ∈ [−8, 8]; the lower figures give the matching spectra,
over just the positive–frequency portions of the spectral support. The dashed (blue) curves are the real
partsℜ (Ψq(f)); the dash–dotted (green) curves are the imaginary partsℑ (Ψq(f)); and the solid (red)

curves are the magnitudes|Ψq(f)| =
√

(ℜ (Ψq(f)))2 + (ℑ (Ψq(f)))2, for q ∈ {1, 2, 3, 4}.

orthonormal basis of the complex–valued Hilbert spaceL2 (R), with orthonormality defined by

∫

ψ+,kl(t)ψ
∗
+,mn(t)dt = δkmδln, k, l,m, n ∈ Z. (7)

It is this orthogonality property that is explored in the current work on the detection of fast–
moving targets in shallow water, where we investigate whether multipath returns can be sepa-
rated in delay–scale space and combined to obtain a processing gain over conventional CW and
LFM pulses. We will use CROWs as signals, and compare their detection performance against
CW and LFM pulses.

3. SIMULATION MODEL

The ocean–acoustic environment used in our simulations is afluid–over–solid extension of the
Pekeris model [5]. A uniform water layer of thicknessh = 100 m, densityρ1 = 1000 kg·m−3

and speed of soundc1 = 1500 m·s−1 is bounded above by a pressure–release surface and be-
low by a uniform solid half–space. Frequency–dependent sound absorptionα1(f) dB·λ−1

1 in
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seawater is modelled with the Francois–Garrison equation,whereλ1 = c1
f

is the wavelength
of sound in water at source frequencyf Hz [6]. The bottom halfspace has uniform density
ρ2 = 2000 kg·m−3, compressional (P–wave) speedc2P = 1800 m·s−1, shear (S–wave) speed
c2S = 600 m·s−1, and attenuation coefficientsα2P = 0.7 dB·λ−1

2P andα2S = 1.5 dB·λ−1
2S , where

λ2P = c2P
f

andλ2S = c2S
f

are the wavelengths of P– and S–waves, respectively, at source fre-
quencyf Hz. These parameters were chosen to approximate a “coarse sand”basement [7].

A transceiver and target, both point–like, moved within thewater, each at a fixed speed,
heading and depth. The transceiver moved at depthzs = 25 m below the ocean surface, and at
constant speedvs = 30 m·s−1 along the linex = vst, y = 0, z = zs (due East). The target moved
at depthzt = 5 m and at constant speedvt = 30 m·s−1 along the linex = 6000− vtt, y = 0,
z = zt (due West). The closest point of approach of target and transceiver was at simulation
time t = 100 s, with the target directly above the transceiver.

Geometrical acoustics (classical ray tracing) was used to synthesize the echo time series
produced when the target was ensonified with a given pulse [8]. Note that the material ab-
sorption coefficientsα1(f), α2P andα2S were treated in the formula for the planewave bottom
reflection coefficient by allowing the speedsc1, c2P andc2S to be complex:

c1 ← c1
(

1 + iα1(f)η−1
)−1

, (8)

c2P← c2P

(

1 + iα2Pη
−1

)−1
, and (9)

c2S← c2S

(

1 + iα2Sη
−1

)−1
, (10)

wherei2 = −1 andη = 40π log10 e is a conversion factor required when attenuation coefficients
are specified in decibels per wavelength.

Data for three different pulses was generated from separatesimulation runs. Each pulse
had a time duration ofT = 1/2 s and was transmitted over the absolute time interval0 ≤ t ≤ T .
Approximately 1.02 s of coherent time series data was synthesized at the transceiver at output
rateFs = 131 072 Hz, over sample numbersk ∈ {1007865, ..., 1142162}, where samplek was
synthesized at absolute timet = kTs for k ∈ {1, 2, ...}, with Ts = 1/Fs being the time between
samples. This data begins at the earliest timekTs at or after the first arrival of the echo at the
transceiver, and ends after a drop in dynamic range in the received time series of about 30 dB.

The three transmit waveforms used in this study were a Continuous Wave (CW) pulse,
of frequency 25 kHz; a Linear Frequency Modulation, Upsweep(LFMU) pulse, of centre fre-
quency 25 kHz and bandwidth 1 kHz; and a CROW pulse, with wavelet indexq = 1562. The
CROW was defined in section2 as having a temporal support of 16 s. In the simulations, each
pulse was transmitted over the interval0 ≤ t ≤ 1/2, so the CROW pulse was compressed
in time by a factor of32. Hence the transmitted CROW pulse had positive–frequency spectral
support over the32 Hz–wide band32f1 ≤ f ≤ 32f3 where32f1 = 32q2/(2q + 1) ≈ 24 984 Hz
and32f3 = 32(q + 1)2/(2q + 1) ≈ 25 016 Hz. Figure2 shows the time–frequency support of
the transmitted CROW pulse. Note the good localisation in both time and frequency.

4. DETECTION PERFORMANCE

Using the simulation model discussed above, noise–free time series data{y1(k)}, {y2(k)} and
{y3(k)}were generated for the three separate pulses, wherek ∈ {1007865, ..., 1142162}. Series
{y1(k)}, {y2(k)} and{y3(k)} are the echo time series of the CROW, CW and LFMU pulses,
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Figure 2. Spectrogram of transmitted CROW pulse, on a logarithmic scale.

respectively. The transmitted pulses were sampled at the same rateFs = 131 072 Hz and stored
in the corresponding time series{x1(l)}, {x2(l)} and{x3(l)}, respectively, over absolute times
t = lTs where l ∈ {1, ..., L} for L = TFs = 65536. Each of the six time series{x1(l)},
{x2(l)}, {x3(l)}, {y1(k)}, {y2(k)} and{y3(k)} was processed with the discrete Hilbert trans-
form to form a discrete analytic signal [4]. Subsequently, each series was forced to have a mean
of zero by calculation and removal of the sample mean. Finally, the zero mean echo time se-
ries data{y1(k)}, {y2(k)} and{y3(k)} were normalized to a variance (mean power) of unity.
Circular white Gaussian noise was added to each normalized echo time series at Signal–to–
Noise Ratios (SNRs) of−34, −36, −38, −40 and−42 dB, where the SNR was given simply
by SNR= −10 log10 (2σ2), with σ2 being the variance of each of the independent real and
imaginary components of the complex Gaussian noise.

For each realisation{nj(k)} of additive noise at a given SNR, forj ∈ {1, 2, 3}, noisy sig-
nalsyj(k) + nj(k) were formed and processed with a detection algorithm. The CWand LFMU
signals were analyzed with a narrowband cross ambiguity detector, with detection statistic

Aj = max
r,s

∣

∣

∣

∣

∣

L
∑

l=1

x∗j(l)wj(r + l)e−2πis(l−1)/L

∣

∣

∣

∣

∣

, j ∈ {1, 2, 3}, (11)

wherex∗j (l) is the conjugate ofxj(l) for l ∈ {1, ..., L} and where

wj(k) =







nj(k) noise only,

yj(k) + nj(k) signal plus noise.
(12)
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Figure 3. Empirical ROC curves for the ROW pulse.

Indexesr ands in (11) refer to a delay ofτ = rTs seconds and a Doppler shift ofν = sFs/L

Hertz.
The detector for the CROW signals uses a filter bank of scaled waveletsψm(t) = ψ (amt),

wherea = 1+(1/q) is the rational scaling factor andm ∈ Z. Whereas the narrowband detector
uses a discrete grid over delay and Doppler co–ordinates (indexed by integersr ands, respec-
tively), the (wideband) CROW detector uses a discrete grid over delay andscale co–ordinates,
where the index of the scale co-ordinate ism. Essentially, for a givenm, that is, for a given fil-
ter functionψm(t) in the bank of scaled filters{ψm(t)}, a correlation is formed of the received
‘signal’ wj(t) with a delayed versionψm(t − τ) of the filterψm(t). The output statistic is the
maximum magnitude of this correlation over all discrete delay and scale co–ordinates.

Figures3, 4 and5 are plots of the empirical Receiver Operating Characteristic (ROC)
curves for the three pulses studied in this paper. Each ROC curve is derived from several hundred
independent realisations of the circular Gaussian noise process at each of the SNR values shown.
For each realisation, the output of a detector was produced for the two cases of noise only and
signal plus noise. This produced empirical estimates of theprobability density functions (PDFs)
of the detector, from which we estimated the probabilities of false alarm (Pf ) and detection (Pd).

The superiority of the wavelet pulse is apparent. For a probability of false alarm of10−2

and at an SNR of−38 dB, for example, the wavelet pulse (figure3) has a probability of detection
of about0.4, compared to the value0.1 for the CW pulse (figure4), a four–fold improvement.
Given the tactical requirement to detect targets as early aspossible, this performance gain is
significant. At the low SNR values used in this study, the LFMUpulse was a poor detector.
Most of the curves for the LFMU pulse are close to the straightline from (Pf ,Pd) co-ordinates
(100, 100) to (10−2, 10−2), this line being the theoretical noise–only limit.
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Figure 4. Empirical ROC curves for the CW pulse.

We can explain the performance benefit of the wavelet pulses with reference to the theory
discussed in section2. There, we mentioned the fact that the set of scaled and delayed copies
{ψ+,kl(t)}, k, l ∈ Z, of the basic CROWψ+(t) forms an orthonormal basis of the complex–
valued Hilbert spaceL2 (R). What this means in practice is that we can represent any re-
ceived (complex–valued) time seriesy(t) as a series over the set of basis functions{ψ+,kl(t)},
y(t) =

∑

k,l cklψ+,kl(t), say, where{ckl} is a set of wavelet coefficients to be determined. De-
termining the wavelet coefficients is analogous to the procedure of performing Fourier analysis
with the Discrete Fourier Transform (DFT), where we find the coefficients in an expansion of
y(t) in terms of sine and cosine functions, these being another orthonormal basis ofL2 (R). The
wavelet filter bank is an analogue of the DFT. By working with the dimensions of delay and
scale, instead of the dimensions of phase and frequency of the Fourier domain, wavelets are
better matched to the delay and scale pulse distortions occurring in shallow water.

5. CONCLUSIONS

The Rational Orthogonal Wavelet was recently demonstratedto show promise in a communi-
cations setting [3]. We have conducted preliminary investigations that indicate the applicability
of ROW pulses to the detection of fast–moving targets in the presence of multipath Doppler
spread, a deleterious phenomenon that is the bane of naval operations in shallow water. In the
present work we have demonstrated the superior detection performance at low SNR of wavelet
pulses, when compared against more traditional CW and LFM pulses. In future work, we aim to
explore the potential of ROW pulses in the detection contextfurther, looking to more rigorous
simulations and at–sea trials. The ability to exploit the extra dimension of diversity afforded by
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Figure 5. Empirical ROC curves for the LFMU pulse.

the set of dominant eigenpaths augurs well for the further application of the wavelet pulse in
shallow water detection.
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