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Abstract

There are diverse areas of application for the acoustic scene analysis, consisting of localiza-
tion and identification of acoustically observable sound sources. In particular, the man-machine
interaction in the broadest sense is of peculiar interest. In this paper a method for the passive
acoustic localization of sound sources using time difference of arrival (TDOA) estimates in mi-
crophone pairs as well as an approach for the classification of ambient noise sources, based on
autoregressive (AR) models, are presented. Therewith, classification of individual sound source
categories is possible, although their spectral characteristics can vary significantly.

1. INTRODUCTION

There are a lot of areas, in which acoustic scene analysis is required. One of the most important
is the interaction between man and machine, which is given in scenarios, where a human inter-
acts with a machine, for example a so called humanoid robot, or is assisted by one. Normally,
the communication takes place via speech. In this case it is important for the robot to know, who
the speaking person is and where he stands. In situations when no immediate contact between
the user and the machine takes place, many other active sound sources can still exist in the
robots proximity. A common example is a kitchen, which contains many different appliances
that can be acoustically observed in most cases. The robot ought to know its environment at any
time to be able to find its way around. Especially, if handicapped or elderly people are involved,
the humanoid robot has to guarantee the security of these people. Due to reduced ability to hear,
an elderly person might not register that the telephone rings, so that the humanoid robot has to
give a hint concerning this event. Thus, the humanoid robot has to compensate the deficiency to
hear of the person, which the robot takes care of.

The man-machine interaction within a vehicle is another example for abilities of an acous-
tic based scene analysis. Thereby, the users and their positions within the vehicle are of peculiar
interest. If the specific seat, from where the car is controlled, and the operating person are
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known, it will be possible to parameterize the selected control instructions with some position
specific properties. Demonstrative examples are the seat and air conditioning settings within the
vehicle, or manipulations of infotainment systems.

Thus the acoustic scene analysis consists of two domains: localization of sound sources
and their classification, or identification respectively. Some approaches covering both fields of
research are presented in the sequel.

2. SOUND SOURCE LOCALIZATION

The technique of choice in most passive acoustic sound source localization systems using a
microphone array is a two-step procedure. First, the time difference of arrival (TDOA) of sound
signals in a pair of spatially separated microphones is estimated. Then the estimated TDOA
in combination with the known microphone array geometry is used for the localization of the
sound source in the environment.

2.1. Signal Model

For a given pair of spatially separated microphones Mi and Mj , the microphone signals xi(t)

and xj(t) for a source signal s(t), propagated through a noisy and reverberant environment, can
be modelled mathematically as

xi(t) = hi(t) ∗ s(t) + ni(t) (1)

xj(t) = hj(t) ∗ s(t− τij) + nj(t), (2)

where τij represents the relative signal delay of interest, ∗ signifies the convolution operator,
hi(t) is the acoustic impulse response between the sound source and the ith microphone, and
the additive term ni(t) summarizes the channel noise in the microphone system as well as
environmental noise for the ith sensor. This noise ni(t) is assumed to be uncorrelated with s(t)
and nj(t). The TDOA estimation attempts to compute τij of the direct-path time delays τi and
τj of the microphone signals xi(t) and xj(t), defined as

τij = τj − τi. (3)

2.2. TDOA Estimation with the GCC Method

The most popular approach for determining the TDOAs is the Generalized Cross Correlation
(GCC) method, presented by Knapp and Carter [1]. The relative time delay τij is estimated as
the time lag with the global maximum peak in the GCC function R(g)

ij (τ):

τ̂ij = arg max
τ

R
(g)
ij (τ). (4)

This GCC function R(g)
ij (τ) is defined as

R
(g)
ij (τ) =

∫ +∞

−∞
ψij(ω)Xi(ω)Xj(ω)∗ejωτ dω (5)

with Xi(ω) the Fourier transform of xi(t).
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The weighting function ψij intends to decrease noise and reverberation influence and tries
to emphasize the GCC peak at the true TDOA τij . For real environments, the Phase Transform
(PHAT) technique has shown the best performance [2]. The PHAT weighting function is defined
as

ψPHAT
ij (ω) =

1

|Xi(ω)Xj(ω)∗|
, (6)

and can be regarded as a whitening filter.

2.3. Reliability Criterion for TDOA Estimates

Although the GCC approach seems to be practical, its application in real acoustic environments
is only of limited use. Even in mildly reverberant rooms, the TDOA estimation error rate rises
significantly, delivering unreliable time delays and hence non-confident sound source locations.
Therefore, reliability indicators are required allowing to evaluate the confidence of every single
TDOA estimate.

As we showed in the past [3], the absolute value of the first maximum peak in the GCC
function can be used very efficiently to evaluate the reliability of the actual TDOA estimate. This
criterion allows a reliability scoring of individual estimates and can be used to reject erroneous
measurements. The higher the value of the first peak in the GCC function is, the higher is the
probability that the TDOA was estimated correctly.

3. SOUND SOURCE IDENTIFICATION

In addition to the acoustic localization, the identification of localized persons and ambient noise
sources is another major part of the acoustic scene analysis. Besides forensic applications, the
interaction between man and machine gains more and more importance. Typical applications are
for instant the identification of speakers by humanoid robots or the identification of passengers
within a vehicle to adjust position and speaker specific properties.

Therefore two different approaches are presented below. We use the Mel Frequency Cep-
stral Coefficients (MFCC) as features in combination with the Gaussian Mixture Model (GMM)
to identify speakers. For classification of ambient noise sources that occur within earshot, a
method, which applies linear prediction based on the autoregressive (AR) models, was devel-
oped.

3.1. Text-independent Speaker Identification

The Mel Frequency Cepstral Coefficients (MFCC) have proven to be the most appropriate pa-
rameters for speaker identification [4], which are also used as basic features for speech recogni-
tion. The sampled instationary speech signal s(k) requires a short time spectral analysis based
on segments of 16 ms each, within which the signal is assumed to be stationary. These segments
with an overlap of the factor 0.5 and weighted with a Hamming window are transformed into
the frequency domain by FFT of length N = 256. Using the Mel filter bank [5], which is simi-
lar to the spectral selectivity of the human ear, a reduced spectral representation is found by 40
filters with a triangular spectral shape. Below 1 kHz, 13 filters are spaced equally, whereas the
other 27 filters are spaced logarithmically along the frequency axis. The logarithm of the out-
put of the 40 filters is applied to the Discrete Cosine Transform (DCT), which decorrelates the
parameters. The 13 largest of these parameters form the MFCC vector of the analyzed speech
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segment. The corresponding statistical speaker model as well as a real-time demonstrator were
presented by Kroschel [6].

3.2. Ambient Noise Source Identification

For the classification of ambient noise sources, we present another approach. Like speaker iden-
tification, these sources are usually instationary. That is why the sampled sound source signal
s(k) requires a short time spectral analysis based on segments of 16 ms and an overlap of the
factor 0.5. Data processing takes place in the time domain, in contrary to the speaker identifica-
tion.

3.2.1. Event Detection

In order to be able to detect an acoustic event, the energy within a frame is calculated for each
frame. The energy en(κ) in the frame κ of length N = 256 is defined as

en(κ) =
1

N

nκ+N−1∑
k=nκ

s(k)2 (7)

with nκ the number of the sample, which is the first one in the frame κ. The weighting with the
frame length is done to get a frame length independent rate for the energy. An acoustic event
is detected, as soon as en(κ) exceeds a previously defined threshold value eon and ends, when
en(κ) falls below another energy threshold value eoff .

3.2.2. Classification with AR models

For the classification of acoustic events, autoregressive (AR) models are used. For each sound
class K(c) with c = 1, ..., Nk to be recognized, one or more AR models p(c)

j with j = 1, ..., P (c)

of order M are appointed. For every sound class K(c) and the associated prediction coefficients
p(c)

j , the prediction error e(c)j (k) for the sample s(k) is determined in the following way:

e
(c)
j (k) = s(k)−

M∑
`=1

p
(c)
j,`s(k − `). (8)

To be able to determine, which model fits the currently handled frame κ at best, the energy of
the prediction error signal ε(c)j (κ) is calculated for every sound class K(c) and the associated
models p(c)

j over the entire frame:

ε
(c)
j (κ) =

nκ+I−1∑
i=nκ

e
(c)
j (k)2. (9)

Subsequently, the value of the prediction error of the model p(c)
j and the sound classK(c), which

represents the frame κ at best, is then defined by

ε
(c)
min(κ) = min

j=1,...,P (c)
ε
(c)
j (κ). (10)
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Finally, the frame κ is assigned to the estimated noise source class K̂ in the following way:

K̂(κ) = arg min
c=1,...,NK

ε
(c)
min(κ). (11)

In order to classify the current acoustic event, frames are aggregated into blocks of defined
size. A trade-off has to be made between a high percentage of correct classification results and
a high number of estimates, which is crucial for the continuous real-time classification. The
entire acoustic event within the actual block is matched to the noise source class, which prevails
in this block.

4. EXPERIMENTAL SETUPS AND SELECTED RESULTS

For data recording, omni-directional electret condenser microphones were used. Real experi-
ments were carried out in different test environments. Investigations were examined in a typical
office room as well in an exemplary up to date car. The distance of the microphone pairs for
localization with the GCC method were varied between 20 cm (concentrated microphone array
in the head of a humanoid robot) and 1.14 m (distributed microphone array in a car).

4.1. Evaluation of the Reliability Criterion for TDOA Estimates

To determine the relationship between the the maximum peak of the GCC function and the
TDOA reliability, TDOA estimates were divided into 15 intervals. The interval borders are ex-
tracted from the histogram for the maximum peak of all analysis frames (Figure 1). The interval
limits were chosen such that every interval contains a similar number of TDOA estimates. Dif-
ferent utterances of German sentences (altogether 47850 words) from 6 speakers (3 male and
3 female) were played back by a loudspeaker, which was placed in 25 different positions in an
office room of 5m x 5m x 3m with typical environmental noise (SNR ≈ 19 dB) coming from
fans, mechanical equipment, etc. and relatively strong reverberations (reverberation time T60 ≈
350 ms). Table 1 details the interval borders. It also shows the correct estimate percentage per
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Figure 1. Histogram for the maximum peak criterion values of all analysis frames.

interval for increasing values of the maximum peak, exemplarily for a concentrated array of
5 microphones in an equilateral double-tetrahedron geometry with a side length of 28 cm, A
TDOA estimation is deemed correct, if the product of the sampling frequency fs and the term
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|τ̂ij − τij|, i.e. the absolute value of the difference of the estimated and the real TDOA value of
the sound source, is less than a decision threshold of Tdec = 1.5 samples

fs · |τ̂ij − τij|

{
≤ Tdec : correct
> Tdec : false.

(12)

As can be seen, the maximum peak in the GCC function allows very convincingly a judgment
about the reliability of the current TDOA estimate. Low criterion values mean low reliability
of only 15.62% for the maximum peak criterion in interval 1, whereas for high values of the
criterion the confidence increases to almost 100%, delivering highly reliable estimates. Conse-
quently this property of the GCC function can be used to detect outliers and to suppress real
environment influences such as noise and room reverberation considerably. With the confidence
criterion, a trade-off has to be made between a high number of estimates, which is necessary for
a continuous target tracking, and a high percentage of correct TDOA estimates, which is crucial
for the robust source localization.

Table 1. Interval borders of the reliability criterion values maximum peak (m) and correct estimate per-
centage per interval.

Interval Maximum peak m Correct estimate Interval Maximum peak m Correct estimate
percentage percentage

1 m ≤ 0.100 15.62% 9 0.250 ≤m ≤ 0.275 94.76%

2 0.100 ≤m ≤ 0.120 18.59% 10 0.275 ≤m ≤ 0.300 96.87%

3 0.120 ≤m ≤ 0.140 24.26% 11 0.300 ≤m ≤ 0.350 98.17%

4 0.140 ≤m ≤ 0.160 32.55% 12 0.350 ≤m ≤ 0.400 99.20%

5 0.160 ≤m ≤ 0.180 45.37% 13 0.400 ≤m ≤ 0.500 99.71%

6 0.180 ≤m ≤ 0.200 62.54% 14 0.500 ≤m ≤ 0.600 99.86%

7 0.200 ≤m ≤ 0.225 79.18% 15 m ≥ 0.600 99.88%

8 0.225 ≤m ≤ 0.250 90.25%

4.2. Evaluation of the Ambient Noise Source Identification System

Various kitchen appliances1 in combination with two untrained sound sources2 were used for the
real-time classification of ambient noise sources. The percentage of correct frame classifications
and the needed number of AR models of order 16 for each ambient sound source state are
summarized in Table 2. The standard deviation is given in Table 3.

As can be seen, the classification with AR models is a multiple detection issue. That is the
reason why also untrained sound sources (speech, knocking noise) are always classified. To
avoid this deficiency, a reject class was defined, additionally to the block aggregation described
in 3.2.2. A block is rejected in case less than 60 percent of frames within the block classify the

1KC(P): kitchen clock (programming), KC(E): kitchen clock (expiration), CG(A): coffee grinder (activity),
T(D): toaster (down), T(U): toaster (up), T(U): telephone (ringing), EWJ(H): electric water jug (heating), EWJ(B):
electric water jug (boiling)

2US(S): untrained source (speech), US(KN): untrained source (knocking noise)
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Table 2. Percentage results of the frame based classification with AR models of order 16 for kitchen
appliances.

Sound class\AR model KC(P) KC(E) CG(A) T(D) T(U) T(R) EWJ(H) EWJ(B)

KC(P) 98.89 1.11 0 0 0 0 0 0

KC(E) 1.31 98.69 0 0 0 0 0 0

CG(A) 1.03 0 57.98 12.59 3.56 0.12 12.99 11.72

T(D) 0.99 0 0.99 83.52 11.52 0 2.34 0.63

T(U) 0.99 0 0.59 12.04 86.1 0 0.28 0

T(R) 0.99 0 0.51 0.24 0.16 92.32 3.60 2.18

EWJ(H) 0.99 0 1.47 5.27 0.51 0.20 87.60 3.96

EWJ(B) 1.78 0 0.40 0.36 0.12 0.08 2.06 95.21

US(S) 1.70 0 21.43 2.53 2.61 2.02 32.75 36.95

US(KN) 0.99 0.04 9.47 31.49 12.83 0.44 43.92 0.83

Average number
of needed 5.60 5.40 16.44 17.60 16.56 14.88 17.04 21.28
AR models

Table 3. Standard deviation for the frame based classification matrix with AR models of order 16 for
kitchen appliances.

Sound class\AR model KC(P) KC(E) CG(A) T(D) T(U) T(R) EWJ(H) EWJ(B)

KC(P) 0.82 0.82 0 0 0 0 0 0

KC(E) 0.30 0.30 0 0 0 0 0 0

CG(A) 0.09 0 3.95 3.61 1.36 0.18 1.88 4.20

T(D) 0 0 0.46 3.05 2.89 0 0.57 0.33

T(U) 0 0 0.82 3.42 3.12 0 0.18 0

T(R) 0 0 0.65 0.43 0.22 2.50 1.94 0.66

EWJ(H) 0 0 0.82 2.13 0.64 0.34 1.01 1.51

EWJ(B) 0.90 0 0.40 0.38 0.18 0.11 0.74 1.07

US(S) 0.54 0 3.30 0.53 0.98 1.59 2.67 3.29

US(KN) 0 0.09 2.69 2.63 2.01 0.35 3.29 0.33

same sound class. One block consists of 62 frames, so that acoustic segments with the length of
approximately one second were analyzed. Percentage results for the block based classification
are presented in Table 4.

It is visible, that using the presented approach, which is based on autoregressive (AR) models,
the classification of individual sound source categories is feasible, although their spectral char-
acteristics vary significantly. Noise sound classes, which differentiate in their reproducibility,
are difficult to classify. This is true for instance for the coffee grinder. An improvement could
be achieved by increasing the number of AR models, but this would also raise the calculating
costs significantly.
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Table 4. Percentage results of block based classification with AR models of order 16 for kitchen appli-
ances and a reject class for untrained noise sources.

Sound class\AR model KC(P) KC(E) CG(A) T(D) T(U) T(R) EWJ(H) EWJ(B) Reject

KC(P) 96.67 0 0 0 0 0 0 0 3.33

KC(E) 0 100.00 0 0 0 0 0 0 0

CG(A) 0 0 69.33 1.33 2.67 0 5.33 0 21.33

T(D) 0 0 0 78.67 1.33 0 0 0 20.00

T(U) 0 0 0 0 98.67 0 0 0 1.33

T(R) 0 0 0 0 0 98.67 0 0 1.33

EWJ(H) 0 0 0 0 0 0 89.33 4.00 6.67

EWJ(B) 0 0 0 0 0 0 2.00 96.00 2.00

US(S) 0 0 4.00 0 1.33 0 12.67 8.00 74.00
US(KN) 0 0 0.67 0 0.67 0 41.33 0 57.33
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