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Abstract

The paper deals with the subharmonic response of a shallow cable due to random chord length
variations, caused by time varying motions of the support points of the cable. Under deter-
ministic harmonic support point motions the stable subharmonic motion of order 2 consists of
a harmonically varying component in the equilibrium plane and a large subharmonic out-of-
plane component with a fixed phase lag producing a trajectoryof the midpoint with a shape like
the symbol used for infinity. A more realistic excitation is obtained by replacing the harmonic
chord length variation by a narrow-banded process with the same variance and centre frequency.
In this case a very different response pattern is observed even for a very small band width of
the excitation process. The phase between the in- and out-of-plane displacements is no longer
locked at a fixed value, causing the trajectory to rotate slowly around the chord line. As a con-
sequence a substantial in-plane subharmonic response component is brought forward. Further,
the time-varying amplitudes of the elongation variations tend to enhance chaotic behaviour of
the response, which is detectable via extreme sensitivity on the initial conditions or via the sign
of a numerical calculated Lyapunov exponent. The dependence of these findings on the specific
stochastic modelling is investigated by analysing two chord elongation processes with almost
identical auto-spectral densities, i.e. the statistical second moment properties of the processes
are almost identical, whereas higher order moments differ significantly. In one case, the chord
elongation is modelled as a filtration of a Gaussian white noise through a linear second order
differential filter. The Gaussian output process has realizations with slowly varying phases and
amplitudes slowly varying around the amplitude of the comparable harmonic excitation. In the
other case the excitation process is modelled by a harmonic zero time-lag transformation of a
Wiener process. All realizations have constant amplitudesequal to the purely harmonic exci-
tation, but with a slowly varying phases. The two stochasticmodels provide qualitatively and
quantitatively identical results. The conclusion is that the chaotic response caused by stochastic
excitation mainly is due to time variation of the phases, whereas the amplitude variations are of
minor importance.
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1. INTRODUCTION
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Figure 1. Trajectory at the midpoint of the cable. (a) Harmonic chord elongation. (b) Stochastic chord
elongation, unstable response.

Cable systems are of great interest in a wide range of applications in civil engineering to
supply both support and stability to large structures. Typically, cables used as support of cable-
stayed bridges, masts and TV-towers are characterized by a sag-to-chord-length ratio below say
0.01, which means that the natural frequencies for the in-plane eigenvibrationsω2, ω4, . . ., and
the out-of-plane eigenvibrationsω1, ω3, . . . are pairwise close. The primarily external excitation
of such cables is caused by the motion of the support points ofthe cable rather than by external
distributed dynamic wind or aeroelastic loads. Especially, the component of the support point
motion along the chord of the equilibrium suspension introduces both additive and parametric
excitation terms in the nonlinear modal equations of motiondue to the elongation and shortening
of the chord length.

Dangerous situations arise when the chord elongation is harmonically varying with a cir-
cular frequencyω0 in certain disjoint intervals. Especially, whenω0 is about twice the funda-
mental out-of-plane circular eigenfrequencyω1, large subharmonic vibrations with the circular
frequencyω0/2 may take place. It turns out that the single mode in-plane subharmonic of the
order 2 is unstable for arbitrarily small excitation amplitudes. Instead a coupled vibration oc-
curs, in which large subharmonic vibrations out of the static equilibrium plane take place with
the circular frequencyω0/2, whereas the in-plane vibrations are harmonically varyingwith the
circular frequencyω0, and with a relatively small amplitude. The out-of-plane displacement is
brought forward by nonlinear couplings, and has a well-defined phase leading to the in-plane
harmonic component. The indicated phase locking between the two vibration components pro-
duces a trajectory of shape like an infinity sign as shown in Figure 1a.

In reality the supported structure is performing narrow-banded stochastic vibrations with
a centre frequencyω0 close toω1. Hence, the chord elongation will also be narrow-banded
stochastic varying. The resulting subharmonic response isqualitatively very different from the
comparable harmonic excitation as shown in Figure 1b. In this case the phase between the two
displacement components is no longer locked at a certain value but becomes slowly varying
with time. This phase variation causes the trajectory of theresponse to rotate slowly around
the chord line, introducing a large subharmonic response component also in the static equi-
librium plane. This phenomena was investigated by Zhou et al. [1] based on extensive Monte
Carlo simulations, modelling the stochastic variation of the chord elongation as a filtered white
noise process. It was concluded that the unlocking of the phases, and hence the rotation of the
trajectory, was caused by the slowly varying amplitudes of the narrow-banded excitation pro-
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cess. Another finding was that the stochastic variations of the chord elongation enhanced the
tendency to chaotic response relative to the comparable harmonic excitation. Still, it is open
whether these findings are entirely caused by the variation of the amplitudes of the chord elon-
gation process, or similar effects may occur due to the simultaneous slowly variation of the
phase of the excitation process. In the present paper this isinvestigated by comparing with
an alternative Monte Carlo simulation approach due to Griesbaum [2]. All realizations of the
underlying stochastic process have constant amplitude equal to the referential harmonic excita-
tion, and the randomness is completely caused by a slowly varying phase, which is modelled as
a Wiener process.

2. THEORY
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Figure 2. Cable in static equilibrium configuration

Figure2 shows a cable in the static equilibrium state with the chord lengthL and the sag
f . Although depicted in a horizontal position the cable should be thought of as inclined with
the chord making an angleθ with a horizontal line. The sag is caused by the componentg cosθ
of the acceleration of gravity in the orthogonal direction of the chord. The plane equilibrium
state is maintained by a prestress forceH along the chord line. The sag-to-chord-length ratio
f/L is assumed to be sufficiently small that a parabolic approximation may be used for the
suspension. The dynamic displacement componentsu(x, t), v(x, t), w(x, t) of a material point
of the cable along the axes of the indicated(x, y, z)-coordinate system are caused by the chord
elongationu(L, t)− u(0, t) induced by the motion of the two support points. Conveniently, the
chord elongation may be described by the following non-dimensional parameter

e(t) =
EA

H

u(L, t) − u(0, t)

L
(1)

whereE is the elasticity modulus andA is the cross-sectional area. The in-plane and
out-of-plane displacement componentsv(x, t) andw(x, t) are dominated by the fundamental
eigenmodes. The second in-plane and second out-of-plane modes are not exposed by the chord
elongation, because the corresponding modes are antisymmetric. Then, the following single
mode expansions of the in-plane and out-of-plane displacements turns out to be appropriate

v(x, t) ≃ Φ2(x)q2(t) , w(x, t) ≃ Φ1(x)q1(t) (2)

The eigenmodesΦ1(x) andΦ2(x) are normalized to 1 at the midpoint, so that the cor-
responding modal coordinatesq1(t) andq2(t) are measures of the actual displacements at this
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position. The related out-of-plane circular eigenfrequency ω1 is slightly smaller than the in-
plane eigenfrequencyω2 due to effect of the suspension. Retaining up to cubic non-linear terms
in the equations of motion the following highly reduced 2 degrees-of-freedom system may be
formulated, Zhou et al. [1]

q̈1 + 2ζ1ω1q̇1 + ω2

1

(

1 + e(t)
)

q1 + β1q1q2 + q1

(

γ1q
2

1
+ γ2q

2

2

)

= 0

q̈2 + 2ζ2ω2q̇2 + ω2

2

(

1 + αe(t)
)

q2 + β2q
2

1
+ β3q

2

2
+ q2

(

γ3q
2

1
+ γ4q

2

2

)

= −ηe(t)

}

(3)

ζ1 andζ2 are the modal damping ratios, andα, β1, β2, β3, γ1, γ2, γ3, γ4, η are all non-
dimensional parameters of magnitude 1, which depends on theeigenmodesΦ1(x) andΦ2(x). As
seen the chord elongatione(t) is exposing the system both to external and parametric excitation.
Based on simulations with a full non-linear finite difference model it was demonstrated by
Zhou et al. [1] that the indicated two degree-of-freedom model was adequate in predicting
qualitatively and quantitatively as well as the dynamic response and stability as the chaotic
response of the cable.

The referential harmonic varying chord elongation is givenas

e(t) = e0 cos(ω0t + W0) (4)

whereω0 denotes the circular frequency,e0 is a non-dimensional amplitude of magnitude
1, andW0 is a constant deterministic phase. The corresponding chordelongation obtained by
the filtration of a unit intensity white noise through a second order filter is given

ë + 2µėω0 + ω2

0
e =

√

2µω3

0
e0w(t) (5)

whereµ is the band width (damping ratio) of the filter, andw(τ) is a zero mean unit
intensity Gaussian white noise with the auto-covariance function

κww(τ) = E[w(t)w(t + τ)] = δ(τ) (6)

The auto-covariance function of the out-put process becomes, Lin [3]

κee(τ) =
1

2
e2

0
e−µω0|τ |

(

cos(ωdτ) +
µ

√

1 − µ2
sin

(

ωd|τ |
)

)

, ωd = ω0

√

1 − µ2 (7)

Alternatively, the chord elongation may be modelled as a harmonic zero-time lag trans-
formation of a Wiener process (the integral of a white noise process) modelled by Griesbaum
[2] whereωd signifies the damped circular eigenfrequency of the filter,

e(t) = e0 cos
(

ω0t + W (t)
)

(8)

W (t) =
√

2µω0

∫ t

0

w(τ)dτ (9)
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After a transient phase the auto-covariance function of (8)can be shown to approach the
stationary value

κee(τ) =
1

2
e2

0
e−µω0|τ | cos(ω0τ) (10)
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Figure 3. (a) Filtered white noise process. (b) Varying phase process.µ = 0.01, e0 = 0.3.

The models (4), (5) and (8) all have zero mean, variance1

2
e2

0
, and the dominating circular

frequencyω0. The amplitudes of (4) and (8) are both constant and equal toe0, whereas the
amplitude of (5) is slowly varying arounde0.
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Figure 4. One-sided auto-spectral density function for thetwo stochastic chord elongation processes. (*)
Filtered white-noise process (�) Varying phase process.µ = 0.1, e0 = 0.3.

Despite the apparently completely different realizationsof (5) and (8) as shown on Fig-
ures 3a and 3b the corresponding auto-covariance functions(7) and (8) are identical within an
error of magnitudeµ. This has been illustrated in Figure4 by a numerical calculation of the
corresponding auto-spectral densities based on obtained realization of the processes.

3. NUMERICAL EXAMPLE

Figure5 shows the variation of the variancesE[q2

1
] andE[q2

1
] of the out-of-plane and in-plane

modal coordinates as a function of the band width parameterµ. The amplitude parameter is fixed
at the valuee0 = 0.3, and the central circular frequency isω0 = 2ω1. As seenE[q2

1
] decreases,

andE[q2

1
] increases withµ. Especially, the out-of-plane response ceases forµ > 0.11. Hence, a

bifurcation in the stochastic response takes place at this point. Within the sampling error of the
monte Carlo simulations the results produced by the two models for the chord elongation are
quite identical.
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Figure 5. Varians variation withµ. (*) Filtered white-noise process (�) Varying phase process.e0 = 0.3,
ω0 = 2ω1.
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Figure 6. Lyapunov exponent variation withµ, , ω0 = 2ω1. (*) Filtered white-noise process (�) Varying
phase process. (bottom)e0 = 0.1. (middle)e0 = 0.2. (top)e0 = 0.3.

Chaotic behaviour is characterized by exponential growth between two neighboring dy-
namic states exposed to the same external excitation. This can be analysed by the sign of the
so-called Lyapunov exponents, where a positive value indicates exponential growth of the dis-
tance between the two states, whereas a negative value indicates exponential approach of the
states with time. Hence, predictability, is related with negative Lyapunov exponents, whereas
positive Lyapunov exponents indicate chaotic behaviour. Numerically, the Lyapunov exponent
may be sampled by the algorithm of Wolf et al. [4]. The designation "stochastic chaos" means
that the response behaves chaotic for almost all realizations of the response (chaotic behaviour
with probability 1). The chaotic behaviour of the two chord elongation processes have been
compared by comparing the Lyapunov exponent of the responses calculated by exactly the
same realization of the underlying unit intensity white noise processw(τ). Figure6 shows the
estimated Lyapunov exponents as a function ofµ and discrete values of the amplitude parameter
e0. (*) indicates results obtained from the filtered white noise, (�) those obtained from the vary-
ing phase process. As seen, no noticeable differences between these curves are obtained. The
results for the referential harmonic chord elongation process is obtained in the limitµ → 0. As
seen, these are all negative. Hence, the response is predictable at least for the non-dimensional
chord elongation amplitudee0 ≤ 0.3. By contrast, the stochastic response looses predictability
at a critical value ofµ even for the relative small amplitude valuee0 = 0.1. If e0 is not too large
predictability is eventually recovered at sufficiently large values of the band width parameter.
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4. CONCLUSIONS

The stochastic response and chaotic behaviour of a shallow cable have been analysed by two
comparable stochastic models for the chord elongation. Onemodel the chord elongation process
is obtained by linear filtration of Gaussian white noise through a second order filter. The other
model is based on a zero-time lag harmonic transformation ofa Wiener process. The processes
have zero mean value, and almost identical auto-covariancefunctions. The former process has
both slowly varying amplitudes and phases, whereas the amplitudes of the latter is constant,
and only the phases are varying. Based on Monte Carlo simulations with the two models almost
identical results were obtained for the variance response of the modal coordinates. Neither,
did the Lyapunov exponents obtained by numerical sampling of the response, using the same
input white noise in the two models, show much difference. From this it is concluded that
the completely different subharmonic response compared tothat of the referential harmonic
excitation, is primarily caused by the phase variation. Since, the two stochastic chord elongation
models have completely different higher order statisticalmoments, it is further concluded that
the indicated phenomena is embedded in the second order statistical moments, i.e. the auto-
variance function or auto-spectral density function.
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