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Abstract

The coupled wavenumbers in the axisymmetric mode of a fluid-filled cylindrical shell are stud-
ied. The coupled dispersion equation of the system is rewritten in the form of the uncoupled
dispersion equation of the structure and the acoustic domain, with an added fluid-loading term
(ε) due to the coupling. Using the smallness of poisson’s ratio, a double-asymptotic solution to
this equation is found for large and small values of ε. Analytical expressions are derived for the
coupled wavenumbers. Different asymptotic expansions are used for different frequency ranges
with continuous transitions occurring between them. The wavenumber solutions are continu-
ously tracked as ε varies from small to large values. A general trend observed is that a given
wavenumber branch transits from a rigid-walled solution to a pressure-release solution with
increasing ε. Also, it is found that at any frequency where two wavenumbers intersect in the un-
coupled analysis, there is no more an intersection in the coupled case, but a gap is created at that
frequency. Only the axisymmetric mode is considered, however the findings can be extended to
the higher order modes.

1. INTRODUCTION
A classical problem in structural-acoustics concerns the wavenumber characteristics of a fluid-
filled flexible cylindrical shell of infinite length [1]. The fluid-structure coupled wavenumbers
can be found numerically as solutions to the coupled dispersion equation for a particular set of
system parameters [2]. However, these numerical solutions do not clearly bring out the physics,
such as transition of the solutions as a function of the coupling parameter. Asymptotic analysis
can be efficiently used to continuously track wavenumber solutions as a function of a parameter
(ε) varying from small to large values. This provides additional insights into the coupling effect
along with analytical formulas for the solution. Asymptotic analysis has been used for finding
the coupled wavenumbers of a structure in contact with of an unbounded acoustic medium [4].
However, no such analogous studies have come to our notice for the case of flexible acoustic
ducts. In this direction a work on planar geometry has been completed [5]. In this study, the
axisymmetric vibrational mode of an infinite fluid-filled cylindrical shell is considered which is
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more complex due to the curvature effects.
2. FORMULATION

Using Donell-Mushtari theory for cylindrical shells [2, 3], the governing equation for the in
vacuo free vibration of an infinite cylindrical shell of radius a, thickness h, at a circular fre-
quency ω is given by
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where u, v, w are the vibrational amplitudes in the axial (x), circumferential (θ) and radial (r) di-
rections, respectively. n is the circumferential mode of vibration, κ=kxa is the non-dimensional
wavenumber in the axial direction (kx being the corresponding dimensional quantity), Ω =

ωa/cL is the non-dimensional frequency and β2=h2/(12a2). Also, ρs is the shell-density, ν is
the poisson’s ratio and cL is the extensional phase speed of the shell material. The square matrix
in the above equation shall be denoted by L.

For the cylindrical shell filled with an acoustic fluid of density ρf and sonic velocity cf ,
the third diagonal term is modified by a fluid loading term as follows [2]

L33=−Ω2+1+β2
(
κ2+n2

)2−Ω2ρfJn(kr
sa)

ρskr
shJ ′

n(kr
sa)

, (2)

where κ2 + (kr
sa)2 = Ω2 (cL/cf)

2. Jn denotes the nth order Bessel function of the first kind and
′ denotes differentiation with respect to the argument of the function.

It is apparent from the non-diagonal form of L that the essential complication introduced
by the shell curvature is to couple the dynamics in the three perpendicular directions. The radial
and the circumferential directions are coupled because of the curvature. The axial vibrations in
turn get coupled to the radial vibrations due to the poisson’s effect [3].

From now on, we shall consider the axisymmetric circumferential mode only ( n = 0). This
mode of vibration is completely due to the extensional nature of vibration and hence the tor-
sional vibration is completely uncoupled from the radial and axial vibrations. This is also seen
from the form of L having L21=L12=L23=L32=0. As is clear from the nature of L13=L31=νκ,
the coupling between the radial and the axial directions is due to the poisson’s effect.

Thus, a non-trivial solution to equation (1) is obtained when κ =
√

2/(1 − ν)Ω. The
corresponding solution u=w=0 and v 6=0, represents a torsional wave, traveling at a speed ω/k

= cL

√

(1 − ν)/2. With the approximation 1-ν2≈1, we have cT =
√

G/ρs, where G is the shear
modulus of elasticity of the shell material. As elaborated earlier, fluid-loading affects the L33

term only and thus, the torsional dynamics discussed above remains unaffected. In the remainder
of this article, we shall exclude this mode from further discussion.

The coupled axial and radial motion may be represented by a reduced set of equations as
follows

[
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, (3)

where L11, L13=L31 are given by equation (1) and L33 is given by equations (1) and (2) for the
in vacuo and the fluid-loaded cases, respectively. To obtain a non-trivial solution to the equation
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above, the determinant needs to be equated to zero. This leads to the dispersion equations for the
in vacuo and the fluid-loaded cases which can be solved numerically [2]. As elaborated earlier,
such numerical solutions do not clearly give the physical insights into the solutions. We shall
use asymptotics to arrive at the wavenumber-frequency characteristics for both the in vacuo and
the coupled case.

3. UNCOUPLED ANALYSIS
In this section, we shall find the acoustic wavenumber when the cylinder is rigid-walled and
also the in vacuo structural wavenumber. These solutions shall be referred to as the uncoupled
acoustic and the uncoupled structural wavenumbers, respectively.

3.1. Uncoupled Acoustic Wavenumber
The wavenumber-frequency characteristics of a cylindrical acoustic waveguide have been de-
rived in detail in [6]. Here, we present the main results.

Mode Rigid Pressure release
walled

Plane wave 0 not applicable
First cut-on 3.832 2.405
Second cut-on 7.016 5.52

Figure 1. λ values of a cylindrical acoustic duct under
different boundary conditions.

For a cylindrical waveguide with
rigid-walled or pressure-release boundary
condition, the acoustic pressure is rep-
resented by a traveling wave in the ax-
ial direction (x) and by a Bessel func-
tion in the radial direction (r). For the ax-
isymmetric case, the radial mode is of the
form J0(λr/a), where λ is given in Figure
1. The wavenumber of the x-directional
traveling wave is kx =

√

ω2/c2
f − λ2/a2.

3.2. Uncoupled Structural Wavenumber
The determinant of the reduced matrix in equation (3) is as follows

L
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With ν=0, the term L has roots κ = ±Ω which implies kx = ω/cL. This is the longitudinal wave
in the x-direction propagating at the extensional wave-speed (cL). The term B in the equation
(4) has the following roots κ = ± 4

√
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direction.
With 0<ν2�1, (as is the case in practice), we expect solutions to the dispersion equation

(4) to be close to the solutions described above. To obtain these solutions we use a regular per-
turbation method. Substituting κ =k0 + ν2k1 in equation (4) and performing a series expansion
about ν=0, we get
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Equating the O(1) term to zero, we obtain the roots of κ as discussed previously for the case of
ν=0. Putting k0=Ω, in the equation at O(ν2) we get
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1
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2
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It is verified through numerical analysis that the above solution gives the wavenumber corre-
sponding to the dominantly longitudinal wave for all frequencies except Ω≈1. This is because
the correction term k1 becomes large for Ω≈1. This is typical of the perturbation method and
arises due to improper scaling of the asymptotic term (ν2 in this case) [5].

Similarly, putting k0 = 4

√

(Ω2 − 1)/β2, in the O(ν2) term of equation (5) we get
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This solution corresponds to the bending wave and also matches with numerical analysis results.
This solution also remains accurate for all frequencies except Ω≈1.

4. COUPLED ANALYSIS
In this section, we present the coupled analysis of the problem described in section 2 for Ω>

1. The problem under suitable conditions will be posed as a perturbation to that described in
section 3. Then, coupled wavenumber solutions will be found by using a regular perturbation
method. With J ′

0(x)=−J1(x), the coupled dispersion relation is
L

︷ ︸︸ ︷(
−Ω2 + κ2

) [

B
︷ ︸︸ ︷(
−Ω2 + 1 + β2κ4

)
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A
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F

]
− ν2κ2J1 (ξ) ξ
︸ ︷︷ ︸

P

= 0, (8)

where ξ =

√
(

cL

cf

)2

Ω2 − κ2 and ε =
ρfa

ρsh
.

We now describe the physical relevance of each term in the equation above. As explained in the
previous section, the terms L and B equated to zero are the dispersion relations corresponding
to the structural in vacuo longitudinal and bending waves, respectively. The solution to R=0,
represents the acoustic cut-on waves in a rigid-walled cylindrical waveguide. The root of A

represents the acoustic plane wave. The term P represents the poisson-effect in the structure.
We have observed earlier (see 3.2), that this can be taken into account by considering ν as a
small asymptotic parameter and solutions can be obtained for ν→0+. The term F represents
the effect of fluid-loading. This term is of O(ε) magnitude. With F and P being asymptotic
terms, the following two cases arise :

1. When F and P are zero (i.e. ε and ν are zero), the roots of equation (8) are the roots of L,
B, R and A. If 0<ε�1, F becomes a small term of magnitude O(ε). On the other hand,
since ν<1 in practice, P representing an O(ν2) term is also small. Thus, inclusion of the
asymptotic terms F and P in equation (8), shall give solutions which are perturbations of
the roots of L, B, R and A.

2. When P→0 but F→∞ (i.e. ε→∞ and ν→0), the solution of equation (8) approaches the
roots of J0(ξ)=0. This root represents the wavenumber for the pressure-release acoustic
duct. In addition, there is another solution which approaches the root of L, which will not
be discussed here for brevity.

We will arrive at the asymptotic solution of the coupled dispersion equation (8) by con-
sidering the cases of 0<ε�1 and 1�ε<∞ separately.
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4.1. Large ε (near pressure-release acoustic mode)
To model the effect of large ε, we make a transformation ε′=1/ε, where 0<ε′�1 in equation (8).
This results in the following equation

(
−Ω2 + κ2

) [
ε′
(
−Ω2 + 1 + β2κ4

)
J1(ξ)ξ + Ω2J0(ξ)

]
− ε′ ν2κ2J1 (ξ) = 0. (9)

A form of the solution k = k0 + b1ν
2 + a1ε

′ is subsituted in equation (9) and a double series
expansion about ε′ and ν is performed. Balancing terms at O(1) gives the equation for k0
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
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0



 = 0. (10)

One solution for k0 is the in vacuo longitudinal wavenumber (which will not be discussed fur-
ther). The second solution is the pressure-release acoustic wavenumber, for which a perturbed
solution shall be found under the coupling effect. k0 is given by the following equation

(
cLΩ
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)2

− k2
0 = 2.4052. (11)

At O(ε′) of the double series expansion (equation(9) ), we obtain
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where, k0 is the root of equation (11) and ξ0 =

√
(

cL

cf

)2

Ω2 − k0
2.

The above equation may be solved to obtain a1. Similarly, balancing terms at O(ν2), we obtain
an equation for b1. b1 is found to be zero. Thus, the asymptotic solution has no O(ν2) term. This
is expected as in equation (9) the ν2 term comes along with ε′.
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Figure 2. Wavenumber solution for for large ε. The pa-
rameters chosen are h/a = 0.1, cL/cf = 2, ε = 1.25

and ν = 0.25.

Other than frequencies near the cut-
on frequency for the first pressure-release
mode, the correction factor a1 remains
small for all frequencies. The asymptotic
solution for this range is validated numer-
ically for a suitable choice of system pa-
rameters. The coupled wavenumbers are
plotted in figure (2) for h/a = 0.1,
cL/cf = 2, ε = 1.25 (ε′ = 0.8) and
ν = 0.25 along with the in vacuo bend-
ing wavenumber (equation (7)) and the first
cut-on wavenumber of the pressure-release
acoustic duct. As is seen from the plot, the
coupled wavenumber is a perturbation to
the pressure-release acoustic wavenumber.
Note, the nature of perturbation (i.e. posi-
tive or negative) changes at the frequency
where the in vacuo bending wavenum-
ber intersects the acoustic pressure-release
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wavenumber. Below (or above) this frequency, the coupled wavenumber is greater (or lesser)
than the acoustic pressure-release wavenumber.

4.2. Small ε (near bending wave and near acoustic plane wave)
As for the case of large ε we assume, a double asymptotic expansion method in the form κ =

k0+a1ε+b1ν
2. The procedure to obtain a1 and b1 is the same as discussed previously and will

not be repeated here. The final results are discussed in the following.
Away from coincidence: The possible solutions for k0 ( O(1) solutions to the expansion)

are indicated in Table 1 along with the physical relevance of the solution. Here we shall be
interested in finding the perturbations corresponding to the bending wave and the acoustic plane
wave. The procedure is similar in case of the other solutions. For the bending wave, we have

k0 Ω 4

√
Ω2

−1
β2

cL

cf
Ω Root of

J0(
√

(cLΩ/cf )
2 − k2)

Physical Longitudinal Bending Acoustic Rigid-walled
Description wave wave plane wave acoustic duct cut-on

Table 1. O(1) solution for coupled wavenumbers with small fluid-loading.
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where Θ =

√

(cL/cf )2Ω2β2
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√
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β2 .

For the acoustic plane wave, we have b1 = 0 and a1 =
Ω

2

[

−Ω2 + 1 +
(

cLΩ
cf

)4

β2

] . (14)

Near coincidence: The correction factor a1 obtained for both the acoustic plane wave and
the flexural wave become large at frequencies near coincidence, where the wavenumber of the
in vacuo flexural wave equals the wavenumber of the acoustic plane wave. This is obtained by
simultaneously solving for the components B and A in equation (8). The coincidence frequency
(Ωc) and the wavenumber at coincidence (κc) are given by

Ωc =

√
√
√
√1

2

1 +
√

1 − 4 β2(cL/cf)
4

β2(cL/cf)
4 , κc =

cLΩc

cf

.

Note, Ωc decreases with increase in both β and cL/cf , but remains more than unity. For cases
when βc2

L/c2
f < 1, we have Ωc≈

c2
f

βc2
L

�1 and κc= cf

βcL
. Under these conditions for Ω≈Ωc, the term

B in equation (8) may be simplified to −Ω2+β2κ4. As we are looking for the solution around
the coincidence frequency, κ should be such that −Ω2 + β2κ4≈0 (near the wavenumber of the
in vacuo flexural wave) and κ ≈ cLΩ/cf (near the wavenumber of the acoustic plane wave).
Under these conditions, the argument of the Bessel functions in equation (8) is small. Note, for
small x, J0(x)≈1 and J1(x)≈x/2. Also, as ν2 is another asymptotic term, it has no effect on
a1 which is the correction due to the asymptotic term ε. To model the effect at frequencies near
coincidence, we substitute Ω=Ωc+εΨ in equation (8) leading to
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−Ω̄2+β2κ4

2

(

c2
LΩ̄2

c2
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−κ2

)

+εΩ̄2=0, (Ω̄=
c2
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βc2
L

+εΨ). (15)

To find the coupled wavenumber near acoustic plane-wave, we substitute κ = (cL/cf)(Ωc+

εΨ)+a1

√
ε+a2ε in the equation above and perform a series expansion about ε. Balancing terms

at O(ε) we get a1=±1
2
. Similarly, to find the coupled wavenumber near the bending wave sub-

stitute κ=
√

(Ωc + εΨ)/β+a1

√
ε+a2ε and repeat the process of order balance to get a1=±1

2
.

To choose the appropriate sign of a1 in the above two cases we use a continuity argument.
We have seen for Ω sufficiently far from Ωc, when Ω < Ωc, the correction term corresponding
to the wavenumber of the near acoustic-plane wave is negative, and when Ω > Ωc, the correc-
tion term corresponding to the wavenumber of the near acoustic-plane wave is positive. Thus,
a1=−1/2 (or +1/2) when Ω ≈< Ωc (when Ω ≈> Ωc). Similarly, for the coupled wavenumber
near the in vacuo bending wavenumber a1=1/2 (or −1/2) when Ω ≈< Ωc (or Ω ≈> Ωc). Thus,
the perturbed acoustic branch below Ωc continues as the perturbed structural branch beyond Ωc

and vice-versa. Also, each branch encounters a jump at Ωc.
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Figure 3. Wavenumber solution for small ε (a) Below coincidence frequency (b) Around coincidence (c)
Above coincidence frequency. The parameters chosen are h/a=0.1, cL/cf =2, ε=0.2 and ν = 0.25.

The asymptotic solution obtained above was validated numerically. Figures (3) (a), (b) and
(c) show the results for below coincidence, near coincidence and above coincidence frequency
ranges, respectively, for h/a=0.1, cL/cf=2, ε=0.2 and ν = 0.25. As seen from the figures, a
continuous transition is obtained across the frequency ranges. The below coincidence plot in
figure (3) starts from Ω=6 onwards, for the sake of clarity. The match is good for frequencies
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beyond Ω=1. The above coincidence region is plotted till the frequency at which the in vacuo
bending wavenumber equals the wavenumber of the first rigid-walled acoustic duct cut-on. At
this frequency, again a coincidence-like phenomenon happens with the first cut-on mode instead
of the plane wave. In this range a1 as given in equation (13) becomes large. An alternative
asymptotic expansion needs to be found for this range.

5. CONCLUSION

Frequency

W
av

en
um

be
r

In vacuo flexure
Rigid acoustic duct (plane wave and cut-on)
Pressure-release acoustic duct

=1Ω

Coupled wavenumber

Ω=Ωc

Figure 4. Schematics of the coupled wavenumber
solution. Arrows indicate transition of solutions
as wavenumber increases.

The relation of the coupled wavenumbers to
the in vacuo bending wavenumber, and the un-
coupled acoustic wavenumbers (planewave and
both the cut-on waves) is established using
asymptotics. A schematic of the results found
is presented in figure (4). For small ε, the cou-
pled wavenumbers are perturbations of the in
vacuo bending wave and the wavenumbers of
the rigid-walled acoustic waveguide (includ-
ing cut-on). At the coincidence frequency, the
branches corresponding to the uncoupled flexu-
ral wave join with that of the uncoupled acoustic
plane wave and vice versa. With increasing ε the
perturbations increase until for large values the
coupled wavenumbers can be better identified
as perturbations to the pressure-release acous-
tic duct. However, for all values of ε there is a
solution of the coupled wavenumber which is
greater than the in vacuo bending wavenumber
and also the wavenumber of the acoustic plane
wave. This branch for large ε though indicated
in the schematic result has not been discussed

in the article( it can be found numerically). The derivations presented can be used to continu-
ously track the coupled wavenumber solutions from small to large ε values. Even a first order
asymptotic expansion matched well with the numerical results.
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