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Abstract

Hearing aids and their components are becoming smaller. This presents new problems for the
acoustical components, such as the loudspeaker. A circularmembrane of a hearing aid loud-
speaker is modeled in this paper. Neglecting air influences,the membrane and its suspension
behave as a mass spring system. However, under operating conditions, thin layers of air on both
sides of the membrane influence its behavior. Air can enter and leave these layers at certain
locations on the circular edge of the layer. Since these air layers are thin, visco-thermal ef-
fects may have to be taken into account. Therefore, the air layers are not modeled by the wave
equation, but by the low reduced frequency model that takes these visco-thermal effects into ac-
count. The equations of this model are solved in a polar coordinate system, using a wave-based
method. The other acoustical parts of the hearing aid loudspeaker, and the membrane itself are
modeled by simple lumped models. The emphasis in this paper is on the coupling of the visco-
thermal air layer model to the mechanical model of the membrane. Coupling of the air layer to
other acoustical parts by using an impedance as boundary condition for the layer model, is also
described. The resulting model is verified by experiments. The model and the measurements
match reasonably well, considering the level of approximation with lumped parts.

1. INTRODUCTION

Manufacturers of hearing aids try to meet the demand from their customers for smaller and
aesthetically more appealing products. Miniaturization of hearing aids, while maintaining high
levels of performance, presents designers with new challenges; for example, the visco-thermal
effects of air become highly noticeable in smaller acousticdevices. Many existing modeling
techniques do not accurately account for these effects. Therefore, new simulation tools are re-
quired to help in the design of particular hearing aid components, such as the loudspeaker.
Modeling the hearing aid loudspeaker is the focus of our research.

The hearing aid loudspeaker under consideration, containsa circular membrane that trans-
lates between two air layers; see Fig.1. The membrane is mechanically supported by an airtight
suspension. The air on one side of the membrane is ‘pumped’ through a tube into the volume
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Figure 1. schematic cross-section of a hearing aid loudspeaker. The membrane translates vertically.

of the closed-off hearing canal. The air on the other side of the membrane is connected to a rear
volume inside the loudspeaker, which acts as an expansion chamber.

Figure2 shows a schematic drawing of the model described in this paper. The layer above
the membrane is connected to the ear through a single opening. The layer below the mem-
brane has eight openings to the back volume. When the membranetranslates, air can enter and
leave the layers through these openings. The effect of the ear volume and the back volume are
modeled as impedances acting on the openings. The mechanical suspension is modeled as a
translation spring and two perpendicular rotation springs. The behavior of the complete system
is modeled as a function of the applied excitation force. This model requires a sub-model for
each of the air layers and a sub-model of the mechanics of the membrane and its suspension.
These sub-models are coupled.

The air layers are modeled by the low reduced frequency (LRF) model; see Beltman [1].
This model takes visco-thermal effects into account, whichis essential forthin air layers. Wij-
nant [2] has presented a solution of the LRF model for circular layers, similar to the wave-based
method, which will be used in this paper. Desmet [3] shows the strength of wave based meth-
ods for acoustics, especially for higher frequencies or larger domains. Nevertheless, the domain
used in the model of this paper is very small. The work presented in this paper is one of the
results from the master thesis of Bosschaart [4].

2. THEORY

2.1. The mass-spring model of the membrane and its suspension

The membrane is assumed to berigid and has three degrees of freedom (DOFs): the translation
uz and the rotationsα1 andα2; see Fig.2 for the positive directions. The suspension has a
stiffness for each DOF and is assumed to be infinitely stiff inall other directions. The damping
of the membrane suspension is not modeled in this paper. The DOFs are made dimensionless,
because the air layer model is also expressed in dimensionless variables. This results in the
following harmonic equations for the mechanical system:

(−m + κz) uz − (Fl + Fu) = Fex, (1a)

(−I1 + κr1) α1 − (M1,l + M1,u) = 0, (1b)

(−I2 + κr2) α2 − (M2,l + M2,u) = 0, (1c)

with the dimensionless variables:m andIj mass and mass moment of inertia of the membrane;
κz and κrj the translation stiffness and rotation stiffness; andFex the excitation force. The
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Figure 2. Schematic drawing of the model: (a) top view of the membrane with polarcoordinates and
positive directions of rotation DOFs and moments; (b) front view of the modelwith springs of the sus-
pension, thickness of the layers and positive direction of force and translation DOF; (c) geometry of the
upper air layer; (d) geometry of the lower air layer.

coupling of the mechanical model to the air layer models is achieved usingFi andMj,i, the
forces and moments caused by the air layers. The subscriptsl and u indicate the lower and
upper air layer respectively. Expressions for these forcesand moments will be derived in sub-
section2.3. The variables of the model in this paper are defined in Table1.

2.2. The low reduced frequency model of the air layers

The air layers are modeled by the low reduced frequency (LRF) model; see Beltman [1]. This
LRF model is valid for wave propagation in narrow layers if theflow in the layers is laminar.
Furthermore, the layer thickness and the viscous boundary layer thickness must both be small
compared to the wavelength. These assumptions in the LRF model result in a uniform pressure
across the layer thickness. Therefore, the dimensionless PDE for the pressure perturbationp is
two dimensional:

1

r

∂

∂r

(

r
∂p

∂r

)

+
1

r2

∂2p

∂θ2
− Γ2p = −

inΓ2vs

k
. (2)

The dimensionless variables and coordinates used in this equation are also explained in Table1.
The expressions in this table forB andD are valid for zero slip and isothermal conditions at
the surfaces on both sides of the air layer.

The left-hand side of eq. (2) is the Helmholtz equation in polar coordinates with a complex
propagation constant. The right-hand side of this equationis the squeeze term or source term.
The squeeze velocityvs is positive in the direction outward from the layer. Its expression will
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Table 1. Variables and constants used in the model

Symbol Dimensionless variables Definition∗

F force F̄ =
p0c2

0

ω2 Feiωt

Mj moment around axisj M̄j =
p0c3

0

ω3 Mje
iωt

uz translation DOF of membrane ūz = c0

ω
uze

iωt

αj rotationj DOF of membrane ᾱj = αje
iωt

m mass of membrane m̄ = p0c0

ω3 m

Ij membrane mass moment of inertiaj Īj =
p0c3

0

ω3 Ij

κz translation stiffness of suspension κ̄z = p0c0

ω
κz

κrj rotation stiffnessj of suspension κ̄rj =
p0c3

0

ω3 κrj

k reduced frequency k = ωh0

c0

s shear wave number s = h0

√

ρ0ω
µ

p pressure perturbation p̄ = p0(1 + peiωt)

n isotropic constant n =
(

1 + γ−1
γ

D
)−1

B mean of velocity profile across layer B = 2
(

cosh(s
√

i)−1

s
√

i sinh(s
√

i)

)

− 1

D mean of thermal profile across layer D = 2
(

cosh(sσ
√

i)−1

sσ
√

i sinh(sσ
√

i)

)

− 1

vs squeeze velocity v̄s = c0vse
iωt

v̂ mean particle velocity across layer v̂ = 1
h0

∫ h0

0
v dz̄

v particle velocity v̄ = c0veiωt

r radial coordinate r̄ = c0

ω
r

θ angular coordinate θ̄ = θ

Γ propagation constant Γ =
√

γ
nB

R layer radius R̄ = c0

ω
R

Z acoustical impedance for layer openings Z̄ = p0

c0h0

Z

Symbol Constants value Unit

F̄ex excitation force 0.55 [N]
m̄ membrane mass 1.1e-6 [kg]
Īj membrane mass moment of inertiaj 7.96e-4 [kg m2]
κ̄z translation stiffness of suspension 78 [N m−1]
κ̄rj rotation stiffnessj of suspension 6 [N m rad−1]
R̄u upper membrane radius 1.21e-3 [m]
R̄l upper membrane radius 1.19e-3 [m]
p0 atmospheric pressure 1e5 [N m−2]
c0 speed of sound 343.6 [m s−1]

h0,u upper layer thickness 0.243e-3 [m]
h0,l lower layer thickness 0.119e-3 [m]
ρ0 atmospheric density 1.204 [kg m−3]
µ viscosity 1.837e-5 [kg m−1s−1]
σ sqrt of Prandtl number 0.8449 [–]
γ ratio of specific heats 1.4022 [–]

Symbol Other variables Unit

ω angular frequency [rad s−1]
ΘB angle intervals of boundary barriers [rad]
ΘO angle intervals of boundary openings [rad]
LΘO

total length of the openings [m]
∗ The barred variables are have dimension; for example,R is the dimensionless equivalent ofR̄.
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be derived in sub-section2.3. The analytical solution of the PDE is:

p = Cc
0I0(Γr) +

∞
∑

m=1

[

Im(Γr)
(

Cc
m cos(mθ) + Cs

m sin(mθ)
)]

+
in

k
vs. (3)

This form of the solution results after separation of variables; demanding periodicity with period
θ = 2π; and demanding continuity atr = 0. The symbol Im denotes the modified Bessel
functions of the first kind. The particular part of the solution, namely the term containingvs,
has been derived using∆vs = 0, which is true only because the membrane isrigid. Themean
particle velocities within the air layer can be calculated from the pressure solution, using:

v̂r = −

iB

γ

∂p

∂r
, v̂θ = −

iB

γr

∂p

∂θ
. (4)

The analytical solution satisfies the PDE, and the constantsCc
m andCs

m can be calculated
such that the solution satisfies the boundary conditions atr = R. This calculation is achieved
by using a weak formulation of the boundary conditions, withweighing functions cos(wθ) and
sin(wθ); see Wijnant [2]. The resulting linear system is:

N
∑

m=0







(

m
R

+ ΓIm+1(ΓR)
Im(ΓR)

+ γ

iBZ

)

[

∫

ΘO

cos(mθ) cos(wθ) dθ
∫

ΘO

sin(mθ) cos(wθ) dθ
∫

ΘO

cos(mθ) sin(wθ) dθ
∫

ΘO

sin(mθ) sin(wθ) dθ

]

+
(

m
R

+ ΓIm+1(ΓR)
Im(ΓR)

)

[

∫

ΘB

cos(mθ) cos(wθ) dθ
∫

ΘB

sin(mθ) cos(wθ) dθ
∫

ΘB

cos(mθ) sin(wθ) dθ
∫

ΘB

sin(mθ) sin(wθ) dθ

]







{

Cc
mIm(ΓR)

Cs
mIm(ΓR)

}

+ in
k











{

∫

ΘO

(

∂vs

∂r
+ γvs

iBZ

)∣

∣

r=R
cos(wθ) dθ

∫

ΘO

(

∂vs

∂r
+ γvs

iBZ

)∣

∣

r=R
sin(wθ) dθ

}

+

{

∫

ΘB

∂vs

∂r

∣

∣

r=R
cos(wθ) dθ

∫

ΘB

∂vs

∂r

∣

∣

r=R
sin(wθ) dθ

}











=

{

0

0

}

, (5)

with the weighing function indexw = 0, 1 . . . N . The Bessel term Im(ΓR) has been moved
from the system matrix to the vector of unknowns for better numerical behavior. In this way
a larger number of constants,N , can be calculated before the matrix becomes ill-conditioned.
The row and column corresponding toCs

0 have to be removed from the system, because this
constant is meaningless and it’s therefore not used in eq. (3). The variablesΘB andΘO are the
intervals of the angle coordinateθ where the barriers and openings are located.

Two different boundary conditions were used to obtain the above linear system. For the
barriers a zero radial velocity is used; or∂p

∂r
= 0, a Neumann boundary condition. For the

openings a uniform impedance is used; orp = Zv̂r
→

γp

iBZ
+ ∂p

∂r
= 0, a mixed boundary

condition. The variableZ is the dimensionless impedance. IfZ = 0, the mixed boundary
condition can be rewritten as the Dirichlet boundary condition p = 0.

The impedances at the openings of the layers are determined from lumped acoustical
models. The impedances of these lumped modelsZ̄lumped are defined as pressure divided by
volume flow and have the dimension [N m−5], while the impedances at the openingsZ̄ have
the dimension [N m−4]. The conversion between these two types of impedances is done by
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multiplication with the length of the openings:

Z̄ = L̄ΘO
Z̄lumped, (6)

with L̄ΘO
the total length of the openings of the layer. The back volumein the loudspeaker is

modeled as a lumped volume and its impedance is applied to theopenings of the lower layer.
The ear volume is connected to the membrane with a tube. Theseare modeled as a lumped
Helmholtz resonator and its impedance is applied to the opening of the upper layer.

The system of eq. (5) is solvable for the constantsCc
m andCs

m. The system has similarities
to a Fourier series and the resulting solution can be improved by applying theLanczos sigma
factors to the calculated constants.

2.3. The coupling terms and the complete model

The membrane is coupled to the two layers in two ways. Firstly, the squeeze velocity of the
membrane appears in the source term of the air layer model. This velocity needs to be known at
every location on the membrane. Expressed in polar coordinates and the DOFs of the membrane,
the dimensionless squeeze velocity for thelower air layer is:

vs,l = i (uz + α1r sinθ + α2r cosθ) . (7)

This result must be multiplied by−1 to obtain the squeeze velocity for theupper layer, because
its positive direction is defined outward with respect to thelayer:vs,l = −vs,u

Secondly, the pressure in the air layers can produce forces and moments on the membrane
(F andM in eq. (1)). These can be calculated by integrating the pressure in the layers over the
membrane surfaceΩ. Using eq. (3) and (7), this results in:

Fl =

∫∫

Ω

pl dΩ =
2πRl

Γl

Cc
0,lI1(ΓlRl) −

nlπR2
l

kl

uz, (8a)

M1l =

∫∫

Ω

plr sin(θ) dΩ =
πR2

l

Γl

Cs
1,lI2(ΓlRl) −

nlπR4
l

4kl

α1, (8b)

M2l =

∫∫

Ω

plr cos(θ) dΩ =
πR2

l

Γl

Cc
1,lI2(ΓlRl) −

nlπR4
l

4kl

α2. (8c)

These equations are valid for thelower layer. Note that only one constant is needed to calculate
either the force or one of the moments:Cc

0, Cs
1 or Cc

1. However, the value of these constants
slightly depends on the number of calculated variablesN . The forces and moments for the
upper layer can be derived similarly. For this layer, a minus signs appears in front of the terms
with the constantsC, and all layer specific variables change; for example,nl becomesnu.

Equations (5) and (1) can be combined to form the complete system. This system hasthe
following structure:







[

LRF
]

l

[

0
] [

S(vs)
]

l
[

0
] [

LRF
]

u

[

S(vs)
]

u
[

Fp

]

l

[

Fp

]

u

[

Mech
]

















{

CmIm(ΓR)
}

l
{

CmIm(ΓR)
}

u
{

DOF
}











=











{

0
}

{

0
}

{

Fex

}











(9)

The only non-zero entry in the system vector on the right-hand side isFex at the position cor-
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responding to theuz DOF. The sub-matrices
[

S(vs)
]

contain the system vectors of eq. (5) split
into the contributions of each DOF. Notice that the forces and moments from the air layers as
described by eq. (8) contribute to the sub-matrices

[

Fp

]

as well as the sub-matrix
[

Mech
]

.

3. RESULTS
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Figure 3. Frequency response of the models and the experiment.

The values of the constants used in this paper are shown in Table 1. Furthermore, the
lower layer has eight openings that occupy 32 % of the circumference. The upper air layer has
one opening that occupies 30 % of the circumference. The results for several models and an
experiment are shown in Fig.3. In the considered models, the membrane rotations are very
small compared to the membrane translation. Therefore, only the results for the the translation
DOF ūz are shown.

If the impedance on all openings is set to zero, the air layershardly influence the re-
sponse of the mechanical system. Under these circumstances, the resulting response cannot be
distinguished from the response of the ‘mass-spring model’in Fig. 3.

The response of the ‘complete model’ in Fig.3 is the model with impedance conditions at
the openings. The impedance at the openings of the lower layer represents a lumped acoustical
volume of 1e-8 m3. The impedance at the openings of the upper layer representsa Helmholtz
resonator with a volume of 2e-6 m3, a tube length of 1e-2 m, and a tube radius of 0.5e-3 m. The
resulting uniform impedances for the openings of the layersare:

Z̄u = 46.6iω + 1.71e4 +
1.62e8

iω
, (10a)

Z̄l =
3.40e10

iω
. (10b)

The back volume adds stiffness to the system which decreasesthe low frequency response
and increases the resonance frequency. The Helmholtz resonator adds the resonance and anti-
resonance above 10e4 Hz.
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The results are compared to experiments that were done usinga laser vibrometer. The
displacement of the membrane was measured at nine points. The average displacement of these
points is shown in Fig.3. Clearly, there is a difference between the experiments and the com-
plete model. However, considering the rough approximations of lumped volumes and tubes, the
results are quite good.

A model that better fits the measurements, can be made by changing the lumped values.
Damping, which was neglected in the mechanical model of the suspension, and mass need to
be added. The parameters of the tube are changed heavily to obtain the ‘altered model’, which
is also shown in Fig.3. This model’s response resembles the experiment up to a frequency of
5000 Hz. Unfortunately it is not possible to get the second resonance peak to fit the measure-
ments. This indicates that the lumped approximation of a volume and a Helmholtz resonator is
not accurate enough.

Besides the differences between the model and the experimentdiscussed above, the mea-
surement data shows a rotation that is much larger than in themodel. Even if the volumes are
disconnected from the loudspeaker, the large rotations arepresent in the measurements. The
suspension, that has been modeled as a translation spring and two rotations springs, seems to
have a much more complicated behavior than assumed.

4. CONCLUSIONS

A hearing aid loudspeaker membrane is modeled. The mechanics of the membrane is mod-
eled with a lumped mass spring model. For the air layers on both sides of the membrane, the
distributed LRF model is used. The other parts of the loudspeaker are modeled with straightfor-
ward lumped acoustical models. Despite these rough approximations, the results of the complete
model are quite close to the experiments. For a better model,the sub-models of the suspension
of the membrane and of the acoustical parts other than the airlayers, must be refined.
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