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Abstract

Hearing aids and their components are becoming smalles. griesents new problems for the
acoustical components, such as the loudspeaker. A cirmganbrane of a hearing aid loud-
speaker is modeled in this paper. Neglecting air influenttesmembrane and its suspension
behave as a mass spring system. However, under operatidgions, thin layers of air on both
sides of the membrane influence its behavior. Air can entdrl@ave these layers at certain
locations on the circular edge of the layer. Since theseagirs are thin, visco-thermal ef-
fects may have to be taken into account. Therefore, the ygrdaare not modeled by the wave
equation, but by the low reduced frequency model that tdiesetvisco-thermal effects into ac-
count. The equations of this model are solved in a polar ¢oaté system, using a wave-based
method. The other acoustical parts of the hearing aid |cemlsgr, and the membrane itself are
modeled by simple lumped models. The emphasis in this paer the coupling of the visco-
thermal air layer model to the mechanical model of the memdr&oupling of the air layer to
other acoustical parts by using an impedance as boundadjtioonfor the layer model, is also
described. The resulting model is verified by experimenke fodel and the measurements
match reasonably well, considering the level of approxiomatvith lumped parts.

1. INTRODUCTION

Manufacturers of hearing aids try to meet the demand front thestomers for smaller and
aesthetically more appealing products. Miniaturizatibhearing aids, while maintaining high
levels of performance, presents designers with new clgaierfor example, the visco-thermal
effects of air become highly noticeable in smaller acoudéeices. Many existing modeling
techniques do not accurately account for these effectgeidre, new simulation tools are re-
quired to help in the design of particular hearing aid congms, such as the loudspeaker.
Modeling the hearing aid loudspeaker is the focus of ouranese

The hearing aid loudspeaker under consideration, cordasivsular membrane that trans-
lates between two air layers; see FigThe membrane is mechanically supported by an airtight
suspension. The air on one side of the membrane is ‘pumpealigh a tube into the volume
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Figure 1. schematic cross-section of a hearing aid loudspeaker. Therarenitanslates vertically.

of the closed-off hearing canal. The air on the other sida@htembrane is connected to a rear
volume inside the loudspeaker, which acts as an expansamloér.

Figure2 shows a schematic drawing of the model described in thisrp@pe layer above
the membrane is connected to the ear through a single opehgglayer below the mem-
brane has eight openings to the back volume. When the memtreanstates, air can enter and
leave the layers through these openings. The effect of theohame and the back volume are
modeled as impedances acting on the openings. The mechangggension is modeled as a
translation spring and two perpendicular rotation sprifidgie behavior of the complete system
is modeled as a function of the applied excitation forcesThodel requires a sub-model for
each of the air layers and a sub-model of the mechanics of émhrane and its suspension.
These sub-models are coupled.

The air layers are modeled by the low reduced frequency (LR¥i)ak) see Beltmari].
This model takes visco-thermal effects into account, wisabssential fothin air layers. Wij-
nant 2] has presented a solution of the LRF model for circular laysrsilar to the wave-based
method, which will be used in this paper. Desnijtdhows the strength of wave based meth-
ods for acoustics, especially for higher frequencies geadomains. Nevertheless, the domain
used in the model of this paper is very small. The work preskit this paper is one of the
results from the master thesis of Bosschadirt |

2. THEORY

2.1. Themass-spring model of the membrane and its suspension

The membrane is assumed toriigid and has three degrees of freedom (DOFs): the translation
u, and the rotationsy; anda,; see Fig.2 for the positive directions. The suspension has a
stiffness for each DOF and is assumed to be infinitely sti#flirother directions. The damping

of the membrane suspension is not modeled in this paper. Ofes@re made dimensionless,
because the air layer model is also expressed in dimensgrbriables. This results in the
following harmonic equations for the mechanical system:

(_m+/{z) Uy — (E+Fu) :Fexv (la)
(= + k1) oy — (My; + My ,,) =0, (1b)
(—Ir + Kkpo) g — (May + Ms,,) =0, (1c)

with the dimensionless variables: and/; mass and mass moment of inertia of the membrane;
k. and ,; the translation stiffness and rotation stiffness; dg the excitation force. The
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Figure 2. Schematic drawing of the model: (a) top view of the membrane with potadinates and
positive directions of rotation DOFs and moments; (b) front view of the metitél springs of the sus-
pension, thickness of the layers and positive direction of force andlation DOF; (¢) geometry of the
upper air layer; (d) geometry of the lower air layer.

coupling of the mechanical model to the air layer models lWex@d usingF; and M, ;, the
forces and moments caused by the air layers. The subscrgoid,, indicate the lower and
upper air layer respectively. Expressions for these foaresmoments will be derived in sub-
section2.3 The variables of the model in this paper are defined in Table

2.2. Thelow reduced frequency model of the air layers

The air layers are modeled by the low reduced frequency (LR¥gah see Beltmanil]. This
LRF model is valid for wave propagation in narrow layers if fleav in the layers is laminar.
Furthermore, the layer thickness and the viscous boundser thickness must both be small
compared to the wavelength. These assumptions in the LRFImesddt in a uniform pressure
across the layer thickness. Therefore, the dimensionle&sfér the pressure perturbatigns

two dimensional:
10 ( 3]9) 1% inl%v,

ror\or) Tae TP ST ©)

The dimensionless variables and coordinates used in thegieg are also explained in Talle
The expressions in this table fét and D are valid for zero slip and isothermal conditions at
the surfaces on both sides of the air layer.

The left-hand side of eg2] is the Helmholtz equation in polar coordinates with a caxpl
propagation constant. The right-hand side of this equasidhe squeeze term or source term.
The squeeze velocity, is positive in the direction outward from the layer. Its eegsion will
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Table 1. Variables and constants used in the model

Symbol Dimensionless variables Definition*
F force F = pg—ggFeM
_ .3 .
M; moment around axi$ M; = 20 Mjett
U, translation DOF of membrane U, = %’uzem
a; rotationj DOF of membrane a; = ae™t
m mass of membrane m = Bom
— 3
I; membrane mass moment of inerfia I =83y
K translation stiffness of suspension R, = B0k,
3
kyj  rotation stiffnesg of suspension Frj = 250K,
k reduced frequency k= o
s shear wave number s=hyo %
D pressure perturbation P = po(1 + pett)
-1
n isotropic constant n=(1+ ”T_lD)
. . N cosh(sv/4)—1 ) _
B mean of velocity profile across layer B = 78\/1,3"“%) 1
: _ cosh(sovi)—1 B
D mean of thermal profile across layer D= sovisso D) 1
Vg squeeze velocity Ts = covge™™?
0 mean particle velocity across layer 0= hio Of"’ vdz
v particle velocity ¥ = cove!
r radial coordinate r=%r
0 angular coordinate 6=20
r propagation constant I'=./-5
R layer radius R=2R
Z acoustical impedance for layer openings Z = cg’go
Symbol Constants value Unit
. excitation force 0.55 [N]
m membrane mass 1.1e-6 [kd]
I; membrane mass moment of inerfia  7.96e-4  [kg ]
R translation stiffness of suspension 78 [Nhh
Frj rotation stiffnesg of suspension 6 [Nmrad]
R, upper membrane radius 1.21e-3 [m]
R upper membrane radius 1.19e-3 [m]
Do atmospheric pressure 1le5 [N#Aj
o speed of sound 343.6 [mY
hou upper layer thickness 0.243e-3 [m]
ho.1 lower layer thickness 0.119e-3 [m]
Po atmospheric density 1.204 [kgm]
U viscosity 1.837e-5 [kgm's™!]
o sqrt of Prandtl number 0.8449 []
y ratio of specific heats 1.4022 [-]
Symbol Other variables Unit
w angular frequency [radd]
Op angle intervals of boundary barriers [rad]
B0 angle intervals of boundary openings [rad]
Lo, total length of the openings [m]
* The barred variables are have dimension; for examiplis, the dimensionless equivalent Bf
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be derived in sub-sectidh3. The analytical solution of the PDE is:

p=Cglo(I'r) + Z (Tr)(Cg, cogmb) + C3, sin(m#)) ] + %vs. (3)
m=1

This form of the solution results after separation of vadeabdemanding periodicity with period
0 = 2m; and demanding continuity at = 0. The symbol }, denotes the modified Bessel
functions of the first kind. The particular part of the sabutj namely the term containing,
has been derived usinyv, = 0, which is true only because the membranegsd. The mean
particle velocities within the air layer can be calculated from the pressuretswipusing:

) 1B Op R 1B Op
UT:_7§7 Vo = —%% (4)
The analytical solution satisfies the PDE, and the consté@ftandC?, can be calculated
such that the solution satisfies the boundary conditioms=atR. This calculation is achieved
by using a weak formulation of the boundary conditions, wittighing functions casvf) and
sin(wd); see Wijnant2]. The resulting linear system is:

N m o TassCR) | Jo, costm) coswd) do [, sin(me) cogwd) db
Z:O <R W T iBZ) [fzo cogm#) sin(wh) do fzo sin(mf) sin(w6) dd

C¢ 1, (TR)

C% lm(TR)
._p COSw0) dj _Jo
_pSin(wd) de} B {o} - ®

with the weighing function indexv = 0,1...N. The Bessel term,J(I'R) has been moved
from the system matrix to the vector of unknowns for bettemartical behavior. In this way

a larger number of constantd), can be calculated before the matrix becomes ill-condziibn
The row and column corresponding &g have to be removed from the system, because this
constant is meaningless and it’s therefore not used in3qTke variable® 5 and©, are the
intervals of the angle coordinaiewvhere the barriers and openings are located.

Two different boundary conditions were used to obtain thevalinear system. For the
barriers a zero radial velocity is used; §2r =0, a Neumann boundary condition. For the
openings a uniform impedance is used;por= Z9" — 5 + ‘9” = 0, a mixed boundary
condition. The variableZ is the dimensionless impedance Zf 0, the mixed boundary
condition can be rewritten as the Dirichlet boundary caadip = 0.

The impedances at the openings of the layers are determioedlfimped acoustical
models. The impedances of these lumped mo&gj,aped are defined as pressure divided by
volume flow and have the dimension [N'A}, while the impedances at the openingshave
the dimension [N m*]. The conversion between these two types of impedancesris ty

+<m+rlm+1(m) Jo,, cosmd) cogwt) df [, sin(md) cogwe) df
B TR cogmb) sin(w) dd [, sin(me) sin(w) df

+% {f@o (8@7’é zg%)‘ Coiw& de} + {f@ 81;‘5

Jo (524 35|y sin(ut) os B
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multiplication with the length of the openings:
Z - I_/GOZlumpeda (6)

with Le,, the total length of the openings of the layer. The back volimtte loudspeaker is
modeled as a lumped volume and its impedance is applied topteings of the lower layer.
The ear volume is connected to the membrane with a tube. Tdresmodeled as a lumped
Helmholtz resonator and its impedance is applied to theiopeaf the upper layer.

The system of eq5] is solvable for the constants’, andC’ . The system has similarities
to a Fourier series and the resulting solution can be imgrdyeapplying the_anczos sigma
factorsto the calculated constants.

2.3. The coupling terms and the complete model

The membrane is coupled to the two layers in two ways. Fjrgtly squeeze velocity of the
membrane appears in the source term of the air layer modislvé&locity needs to be known at
every location on the membrane. Expressed in polar coaesirand the DOFs of the membrane,
the dimensionless squeeze velocity for ttneer air layer is:

Vs =1 (uy + ay7r SiNd + agr cOSH) . ()

This result must be multiplied by 1 to obtain the squeeze velocity for thpper layer, because
its positive direction is defined outward with respect tolthyer: v, ; = —v;,,

Secondly, the pressure in the air layers can produce formesxaments on the membrane
(FandM in eq. @)). These can be calculated by integrating the pressuresilatfers over the
membrane surfac®. Using eq. 8) and (7), this results in:

2R R?
= // pd = g 1 (TR — Py (8a)
Q I ’ ky
. R? R}
My = [ prsing)do = Tt (i) - M, (8b)
Q ! !
7 R? nym R}
Ma = [ [ prcosoydn = Tler a(rum) - o, (8c)
Q ! !

These equations are valid for thaver layer. Note that only one constant is needed to calculate
either the force or one of the moments;, C; or Cf. However, the value of these constants
slightly depends on the number of calculated variabfesThe forces and moments for the
upper layer can be derived similarly. For this layer, a minus signs apgpeefront of the terms
with the constant€’, and all layer specific variables change; for exampldaecomes.,,.

Equations ) and (L) can be combined to form the complete system. This systerthbas
following structure:

R, 0] [S@)] ({CalalTR,) ( {0)
0] (R, S, | { {CulnR)}, § =1 {0} ©
), (5], [Mec | | {DOF) {F.)

The only non-zero entry in the system vector on the rightdhside isF,, at the position cor-
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responding to the, DOF. The sub-matrice@S(vs)] contain the system vectors of e§) 6plit
into the contributions of each DOF. Notice that the forced mmments from the air layers as
described by eq8j contribute to the sub-matricé#),| as well as the sub-matrijvech.

3. RESULTS
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Figure 3. Frequency response of the models and the experiment.

The values of the constants used in this paper are shown ie Taburthermore, the
lower layer has eight openings that occupy 32 % of the cirewenfce. The upper air layer has
one opening that occupies 30 % of the circumference. Thdtsefsu several models and an
experiment are shown in Fi@. In the considered models, the membrane rotations are very
small compared to the membrane translation. Thereforg,tbelresults for the the translation
DOF u, are shown.

If the impedance on all openings is set to zero, the air lagargly influence the re-
sponse of the mechanical system. Under these circumstaheagsulting response cannot be
distinguished from the response of the ‘mass-spring mod#lig. 3.

The response of the ‘complete model’ in F&js the model with impedance conditions at
the openings. The impedance at the openings of the lower tapessents a lumped acoustical
volume of 1e-8 m. The impedance at the openings of the upper layer repreadtésmholtz
resonator with a volume of 2e-6%ya tube length of 1e-2 m, and a tube radius of 0.5e-3 m. The
resulting uniform impedances for the openings of the lagees

_ 1.62e8

Z, = 46.61w + 1.71ed + P (10a)

_ .40el

Z; = 5 O O. (10b)
1w

The back volume adds stiffness to the system which decrdbsel®w frequency response

and increases the resonance frequency. The Helmholtzatesaadds the resonance and anti-
resonance above 10e4 Hz.
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The results are compared to experiments that were done ad@gpr vibrometer. The
displacement of the membrane was measured at nine poirdsavEnage displacement of these
points is shown in Fig3. Clearly, there is a difference between the experiments laadam-
plete model. However, considering the rough approximatafiumped volumes and tubes, the
results are quite good.

A model that better fits the measurements, can be made by iclgathg lumped values.
Damping, which was neglected in the mechanical model of tispension, and mass need to
be added. The parameters of the tube are changed heavilyaio the ‘altered model’, which
is also shown in Fig3. This model’s response resembles the experiment up to agney of
5000 Hz. Unfortunately it is not possible to get the secostmance peak to fit the measure-
ments. This indicates that the lumped approximation of amel and a Helmholtz resonator is
not accurate enough.

Besides the differences between the model and the experdisenissed above, the mea-
surement data shows a rotation that is much larger than imtuel. Even if the volumes are
disconnected from the loudspeaker, the large rotationp@sent in the measurements. The
suspension, that has been modeled as a translation spdnvarrotations springs, seems to
have a much more complicated behavior than assumed.

4. CONCLUSIONS

A hearing aid loudspeaker membrane is modeled. The mechahithe membrane is mod-
eled with a lumped mass spring model. For the air layers oh sides of the membrane, the
distributed LRF model is used. The other parts of the loudsgresre modeled with straightfor-
ward lumped acoustical models. Despite these rough appatiins, the results of the complete
model are quite close to the experiments. For a better mtige§ub-models of the suspension
of the membrane and of the acoustical parts other than thayairs, must be refined.
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