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Abstract 
 
The superior properties of Functionally Graded Materials (FGM) are usually accompanied by 
randomness in their properties due to difficulties in tailoring the gradients during 
manufacturing processes. Using the Stochastic Finite Element Method (SFEM) proved to be a 
powerful tool in studying the sensitivity of the static response of FGM plates to uncertainties 
in their material properties. This tool is yet to be used in studying free vibration of FGM 
plates. The aim of this work is to use a Second Order Reliability Method (SORM), combined 
with a nine-noded isoparametric Lagrangian element based on the third order shear 
deformation theory to investigate sensitivity of the fundamental frequency of FGM plates to 
material uncertainties. These include uncertainties in ceramic and metal Young’s modulus and 
Poisson’s ratio, their densities and the ceramic volume fraction. The developed code utilizes 
MATLAB capabilities to derive the derivatives of the stiffness and mass matrices 
symbolically with a considerable reduction in calculation time. Calculating the eigenvectors at 
the mean values of the variables and updating them only at the last iteration significantly 
increases solution speed. The results of the stochastic finite element code are compared to 
published results and to the results of the well-established Monte Carlo simulation technique 
with importance sampling. Results show that the relative importance of variations in the 
constituents’ properties is highly dependent on the volume fraction and is virtually 
independent of the frequency ratio for practical values of solution reliability. SORM is proven 
to be an excellent rapid tool in the stochastic analysis of free vibration of FGM plates, when 
compared to the slower Monte Carlo simulation techniques. 

1. INTRODUCTION 

One way to overcome the adverse effects of abrupt changes in material properties of 
conventional laminated composites is to use Functionally Graded Materials (FGM). In these 
materials, properties vary continuously across the thickness by gradually changing the volume 
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fraction of the constituent materials, usually in the thickness direction only. Due to difficulties 
in manufacturing methods, properties of FGM’s are not deterministic in nature. There is a 
reasonable body of recent research on studying the effect of uncertainties in material 
properties on the accuracy of static and thermal analyses of FGM’s. In [1], for example, 
Ferrante and Graham used simulation to study the effect of microstructural randomness on 
stress and temperature distributions in FGM’s. Later, they included the effect of non-Gaussian 
porosity randomness in their reliability analysis [2]. Yang, et al. [3] investigated the stochastic 
bending response of moderately thick FGM plates.  
  Reliability analysis of the dynamic behavior, however, has not received as much 
attention, even for the more commonly used laminated composites. In [4] Salim, et al. used 
first order perturbation techniques and FEM formulation to investigate the sensitivity of the 
natural frequencies of single ply and double ply laminates to randomness in material 
properties. In [5], Senthil and Batra, on the other hand, obtained exact solutions to the free 
vibration of FGM rectangular plates using deterministic properties.  

Since uncertainties in mechanical properties, material density, and plate dimensions 
greatly affects dynamic response, the sensitivities of the dynamic characteristics of FGM 
plates to random changes in these properties need to be investigated. In this work, our 
previously developed stochastic finite element SFEM analysis of the free vibration of 
composite laminates [6] is adopted for FGM plates. Laminate mechanical behavior is modeled 
using a higher order shear deformable element. The code is built using the MATLAB 7.1 
compiler and all runs are made on a P4 2.8 GHz machine with 512 MB RAM. 

2. FINITE ELEMENT MODEL 

Figure 1 shows the geometry of a rectangular FGM plate. Without losing generality, it can be 
assumed that the top surface of an FGM plate is ceramic rich and the bottom is metal rich. 
The region between the two surfaces consists of material blended with both of them.  
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1. Geometry of the FGM plate. 
 

To include transverse shear stresses and rotatory inertia effects into the free vibration 
analysis of this plate, the Higher-Order Shear Deformation Theory (HSDT) is utilized. The 
displacement field is described in terms of midsurface displacements u, v and w, the 
perpendicular to the midplane, ζ, and the rotations of the normal to the midsurface at ζ = 0,  
φ1 and φ2. Considering the derivatives of the out-of-plane displacement as separate 
independent degrees of freedom transforms this system, into one with 7 degrees of freedom 
per node and C0 continuity. The displacement field may be modified to accommodate C0 
continuity, see [7], as: 
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( )1 2 1 1 2 1, , , ( ) ( )u x x t u f fζ ζ φ ζ θ= + +        (1.a) 

                 
( )1 2 1 2 2 2, , , ( ) ( )v x x t v f fζ ζ φ ζ θ= + +                                    (1.b) 

 
( )1 2, , ,w x x t wζ =         (1.c) 

 
where: 
 

1 1/w xθ = ∂ ∂ , 2 2/w xθ = ∂ ∂ , 3 2
1 ( ) 4 / 3f hζ ζ ζ= − , and 3 2

2 ( ) 4 / 3f hζ ζ= − .  (2) 
 

The components of the effective stiffness matrix Qe of the FGM material are calculated 
using the mixture law: 
 

( ) [ ] [ ] ( )1C CC Me
Q Q V Q Vζ⎡ ⎤ = + −⎣ ⎦     (3) 

 
where the subscripts C and M stand for the isotropic ceramic and matrix constituents, 
respectively, and VC is the ceramic volume fraction given by: 
 

0.5   , - / 2 / 2 ,  0
n

CV h h n
h
ζ ζ⎛ ⎞= + ≤ ≤ ≤ < ∞⎜ ⎟

⎝ ⎠
    (4) 

 
Following a classical FEM formulation, and using variational principles, the 

characteristic equation of the system can be derived, see [7], as: 
 

0Aq qλ− = ,       (5) 
                                                                                
where 1A M K−= , with K and M being the global stiffness and mass matrices of the element, 
respectively, and where q is the global displacement vector.  

3. RELIABILITY MODEL OF THE FGM PLATE 

The plate is assumed to be subjected to a periodic load with frequency ωL, which can take any 
value up to the plate fundamental frequency ωp. This upper limit is not a unique value, but has 
a certain distribution. At the design point, ωp, is equal to a certain specified value ωr, which 
may be taken as that of the periodic load. Accordingly, the performance function is defined 
as: 
 

( ) ( / ) 1p rg X λ λ= −        (6) 
 
where  2, ,p r p rλ ω=  are the eigenvalues, and X is a vector of the basic variables. Here, the 
components of X are Young’s modulus, Pisson’s ratio and density of each constituent; namely 
EC, EM, νC, νM, ρC and ρM. According to Eq. (6), a failure surface or a limit state of interest 
can be defined as g(X) = 0, with a certain probability of failure pf. In order to calculate pf, and 
following our procedure in [6], we shall use the Second-Order Reliability Method (SORM). A 
detailed account of SORM can be found in [8] and will only be summarized here. 
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The method utilizes a second order Taylor approximation of the nonlinear limit state 
function around a given point *X  in the standard normalized space of the random variables: 
 

( )( )
2

* * * *
1

1 1 1

1( ) ( ) ( )
2

n n n

i i i i j j
i i ji i j

g gg X g X X X X X X X
X X X= = =

∂ ∂
≅ + − + − −

∂ ∂ ∂∑ ∑∑  (7) 

  
A simple closed-form solution for the probability of failure using this second-order 

approximation is derived using the theory of asymptotic approximations as: 
 

1
0.5

1

( ) (1 )
n

f i
i

p β βκ
−

−

=

= Φ − +∏       (8) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. SORM rotation of coordinates. 
 

where β is the reliability index obtained using  a First Order Reliability Method (FORM), and 
κi are the principal curvatures of the limit state at the minimum distance point. These 
curvatures can be obtained as follows. First the X ′  standard normal variables are rotated to 
another set of coordinates, denoted as Y, such that the last component of the new set, Yn, 
coincides with the unit gradient vector of the limit state at the design point. This 
transformation is shown in Figure 2 for the case two variables. The rows of the rotation matrix 
R of this orthogonal transformation are calculated using Gram-Schmidt orthogonalization 
procedure, see [8]. Accordingly Yn is calculated from: 
 

1 
2

T
nY Y AYβ= +        (9) 

 
where A is a matrix whose elements aij are computed as: 
 

*

( )
 

( )

T
ij

ij

RDR
a

g Y
=

∇
       (10) 

 
and D being the second-derivative matrix of the limit state surface in the standard normal 
space evaluated at the design point. The required curvatures κi are computed as the 
eigenvalues of the matrix A. The probability of failure can now be calculated from Eq. (8). 
The distance from the origin to this new design point in the X ′ -space is: 
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2*

1

n

i
i

Xβ
=

′= ∑        (10) 

 
The procedure is terminated when reaching the Most Probable Point (MPP). MPP is 

assumed to be reached when values of β and g in two successive iterations are very close to 
each other. Finally, the partial derivatives of the performance function g(X) with respect to all 
random variables Xi can be expressed, using the chain rule. The partial derivatives of the jth 
eigenvalue with respect to the random variables are:  
 

( )T
j j j

j
T
j j

K M
X

X M

φ λ φλ
φ φ

∂ ⎡ ⎤−⎣ ⎦∂ ∂=
∂

      (11) 

 
Standard finite difference routines can be used to evaluate the derivatives of Eq. (11) 

with respect to the random variables. This, however, becomes time consuming because the 
process is repeated at each iteration point. Also, using SORM in computing the probability of 
failure requires calculating the second derivatives as well, which deems the finite difference 
choice impractical. Use is made of MATLAB symbolic capabilities in evaluating the 
derivatives of the reduced stiffness and mass matrices. In evaluating the derivative in the 
numerator of Eq. (11), the eigenvectors at the mean value of X are used, and updated only at 
the last iteration. This is justifiable for large frequency ratios because as the frequency ratio 
increases, MPP tends to be closer to the mean value of X. Validity of this simplification, and 
confidence in the whole modeling, is established in our recent work [6] by comparisons with 
available published results. 

4. NUMERICAL ILLUSTRATION 

Our numerical illustration is that of a SSSS aluminum-zirconia FGM plate. The plate has a 
thickness ratio a/h = 10. To facilitate comparisons with published results, the ceramic volume 
fraction exponent is initially assumed deterministic, n=2. Material properties of the 
constituents are taken as normal random variables with the distributions shown in Table 1. 
The tolerances of convergence on β and g are taken as 0.001. 
 

Table 1. Statistical distribution of the material properties of a SSSS aluminum -zirconia plate. 
 

Property EC (GPa) EM (GPa) νC νM ρC (Kg/m3) ρM (Kg/m3) 
Mean 151 70 0.3 0.3 3,000 2,707 
COV 0.036 0.037 0.0 0.03 0.036 0.036 

 
The calculated nondimensional natural frequency 2 2/M Ma E hω ω ρ= for a 5x5 mesh 

is 4.7799 which compares very well with the published result of 4.7756 reported in [9]. This 
latter value was obtained using a 10x10 mesh of quadratic 8-node serendipity elements.  

To the best of our knowledge, full stochastic analyses, with calculated probability of 
failure, reliability index, and MPP, of the free vibration of FGM plates do not exist in 
literature. Therefore, the obtained results of the probability of failure will be compared only to 
those of a developed and verified code in [6] employing Monte Carlo simulation with 
importance sampling. The same aluminium-zirconia plate is analyzed for a frequency ratio 
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FR= / 0.93r pω ω = . The probability of failure using Monte Carlo simulation technique 
depends on the number of simulations, as can be seen in Table 2. Therefore pf can be taken as 
a dependent random variable, for which one can calculate a mean, a standard deviation and a 
skewness coefficient. These values for the pf distribution of Table 2 are 5.362x10-5, 0.01586, -
0.00301 respectively. The small value of standard deviation suggests that the value of pf does 
not change much around the mean. The negative skewness coefficient means that dispersion 
is more below the mean than above it. Therefore, taking the mean of Monte Carlo calculated 
pf as a reference for comparison is reasonable. 

 
Table 2. Variation of the probability of failure of Monte Carlo simulation for SSSS FGM square plate 
with a/h =10, n=2, and a frequency ratio of 0.93 
 

No. of 
Simulations 900 1000 1100 1200 1300 1400 1500 1600 1700 1500

pf (x105) 5.04 5.26 5.34 5.46 5.48 5.46 5.41 5.38 5.34 5.45 
 

The developed code has the option of using either FORM or SORM as an optimization 
method. Probability of failure, calculated using FORM, is pf =5.42x10-5, while that calculated 
using SORM is pf =5.3625x10-5. In both methods, the system has to be solved only five times. 
FORM overestimates the value of the mean of probability of failure by about 1.13%, while 
SORM overestimates it by only 0.01%. This means that this problem is quasi linear with a 
small introduced error when the nonlinearity is ignored in FORM. Table 3 shows a 
comparison of the values of the reliability index and the probability of failure, calculated for 
three frequency ratios using both FORM and SORM methods. 

Table 4 presents the MPP results of the plate for the three values of the frequency ratio. 
It is clear from this table that Poisson’s ratio of both constituents does not affect the reliability 
of the solution.  
 
Table 3. Comparison of the safety index and probability of failure of SSSS FGM square plate with a/h 
=10, n=2, for three values of the frequency ratio. 
 

/r pω ω  FORM SORM 

 β pf β pf 
0.90 5.5951 1.10E-8 5.5978 1.09E-8 
0.93 3.8710 5.42E-5 3.8737 5.36E-5 
0.95 2.7414 3.10E-3 2.7440 3.00E-3 

 
Table 4. MPP of SSSS FGM square plate with a/h =10, n=2, for three values of the frequency ratio. 

 
/r pω ω  EC (GPa) EM (GPa) νC νM ρC (Kg/m3) ρM (Kg/m3) 

0.90 137.3 61.3 0.3 0.3 3,190.8 3019.1 
0.93 141.8 64.2 0.3 0.3 3,136.8 2,930.8 
0.95 144.6 66.0 0.3 0.3 3,099.0 2,869.0 

 
The sensitivities of the performance function, g, for changes in the random variables are 

plotted in Figure 3. The figure shows that, at this particular value of n, with more metal than 
ceramic, metal properties have a more pronounced effect on the solution. The natural 
frequency is most sensitive to changes in Young’s moduli, and is least sensitive to changes in 
Poisson’s ratio, which explains why the values of νC and νM at the MPP point are almost 
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equal to their mean values. Finally, the figure shows that the relative importance of the 
variables is the same at all reliability levels of this range.  
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Figure 3. Sensitivity of the performance function to changes in the random variables.  

 
Finally, the variation of the covariance of the eigenvalue, COV(λ), due to individual 

uncertainties in the basic random variables is investigated. Unlike results presented so far, the 
randomness in the ceramic volume fraction is considered now. Figure 4 shows the variation of 
COV(λ) when the COV of each of the random variables varies from 0 to 20%, for the case 
when the mean value of n is 2. From this figure it can be concluded that variations in the 
volume fraction exponent  n and Poisson’s ratios have small effects on the randomness of the 
eigenvalue compared to the effects of the density and Young’s modulus. Table 5 shows the 
order of importance of the uncertainties on the calculated distribution of λ in a decreasing 
order of importance for three different compositions of the plate represented by three values 
of the mean of n. It can be seen that as n increases, signifying more metal, the plate natural 
frequency becomes more sensitive to the metal properties than to those of the ceramic.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4. Effect of randomness in the basic variables on the covariance of the fundamental frequency. 
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Table 5. Order of importance of uncertainties in material properties on the randomness of the 
fundamental eigenvalue. 

 
µ(n) EC  EM  νC νM ρC ρM  n 
0.5 1 4 6 7 2 3 5 
1.0 1 4 6 7 2 3 5 
2.0 3 2 7 5 4 1 6 

5. CONCLUSIONS 

The potential and versatility of a suggested procedure were demonstrated by applying it to 
reliability analysis of the free vibration of FGM plates. Using the developed code, the 
derivative of the performance function with respect to each of the random variables was 
calculated symbolically. These variables included the properties of both constituents and the 
ceramic volume fraction. SORM technique was used to optimize the solution and obtain MPP 
of the plate. Natural frequency results obtained showed excellent agreement with the limited 
published results and with Monte Carlo simulation results. SORM was found to be an 
appropriate optimization method for this problem, and converged after a small number of 
iterations. Randomness in Young’s modulus and density of both constituents was found to 
have a strong effect on the randomness of the fundamental eigenvalue. The algorithm can be 
modified to solve other classes of problems with minor programming modifications and smart 
choice of the performance function. These include optimization and forced vibrations. 
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