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Abstract

In this paper, numerical simulation of nonlinear sound wave propagation in time domain is per-
formed by Constrained Interpolation Profile (CIP) method. CIP is a novel numerical scheme
which was recently proposed by Yabe. It is one kind of method of characteristics (MOC) and
is a high accuracy numerical scheme in which numerical dispersion errors are hardly caused.
To achieve high accuracy, not only the acoustic field values on the grid point but also their
spatial derivatives are used in the scheme. It is suitable for analysis of nonlinear wave propa-
gation including weak shock formation because the rapid pressure change such as shock front
easily causes numerical dispersion error in the conventional numerical scheme. Some numeri-
cal demonstrations are made for the one-dimensional nonlinear sound propagation in air. The
results are compared with the conventional FDTD method and the analytical solutions.

1. INTRODUCTION

Time domain numerical analysis of acoustic field has been familiar as a result of recent progress
of computing environments. Although many numerical schemes have been proposed for time
domain analysis, the finite difference time domain (FDTD) method [1] is the most popular
scheme in acoustics. In FDTD method, continuity equation and equation of motion are trans-
formed into central-difference equations, then the equations are solved in a leapfrog manner.
However it is known that the scheme easily causes the error due to numerical dispersion. This
means that the scheme is not so suitable for analysis of nonlinear wave propagation includ-
ing shock formation because the rapid pressure change such as shock front causes numerical
dispersion error.

In this paper, numerical simulation of nonlinear sound wave propagation in time domain is
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performed by Constrained Interpolation Profile (CIP) method. CIP is a novel numerical scheme
which was recently proposed by Yabe[2]. It is one kind of method of characteristics (MOC) and
is a high accuracy numerical scheme in which numerical dispersion errors are hardly caused.
To achieve high accuracy, not only the acoustic field values on the grid point but also their
spatial derivatives are used in the scheme. Some numerical demonstrations are made for the
one-dimensional nonlinear sound propagation in air under the weak shock assumption. The
results are compared with the conventional FDTD method and the analytical solutions.

2. GOVERNING EQUATIONS

The governing equations for the nonlinear acoustic field with the velocity dispersion under the
assumption of weak shock are given as follows [3]

∂p

∂t
= −ρ0c

2
0∇ · u +

δ1

ρ0

∇2p +
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ρ0c2
0

∂p2
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where p is pressure, u is particle velocity vector, ρ0 is ambient medium density, κ is bulks
modulus, c0 =

√
κ/ρ0 is sound velocity of small amplitude. Equation (1) is the continuity

equation and (2) is the equation of motion. δ1 and δ2 are respectively given as

δ1 = χ

(
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cv

− 1

cp

)
, δ2 = ζ +

4

3
η (3)

where χ is thermal conductivity, ζ is bulk viscosity, η is shear viscosity, and cv and cp are
specific heat at constant volume and one at constant pressure, respectively.

Now we consider the one-dimensional case. Using the linear relation ∂p/∂t = −ρ0c
2
0∂u/∂x,

equations (1) and (2) are rewritten for the one-dimensional field as
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where Z =
√

ρ0κ is characteristic impedance. By addition and subtraction of two equations, we
obtain
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where f± are defined as f± = p ± Zu. When the medium dispersion and nonlinearity can be



3

ignored, equations (8) and (9) can be denoted as

∂f+

∂t
+ c0

∂f+

∂x
= 0 (8)

∂f−
∂t

− c0
∂f−
∂x

= 0 (9)

These equations are advection equations and they show that the waves f± propagate along ±x

direction with speed c0.
When one can obtain f±, the sound pressure and the particle velocity can be calculated

respectively as

p =
f+ + f−

2
, u =

f+ − f−
2Z

(10)

3. CIP METHOD

3.1. Advection phase

First we are to solve advection equations (6) and (7) by CIP method which is called advection
phase. The field values f± are defined at the one-dimensional grid points. For the propagating
waves f± along ±x directions, the field values fn

±(xi ± c0∆t) are advected to the point xi after
the time step ∆t as shown in Figure 1.

fn+1
± (xi) = fn

±(xi ∓ c0∆t) (11)

Because the field values fn
±(xi ∓ c0∆t) are not defined at grid points, they are interpolated by

using the field values at the grid points as follows

fn+1
± (xi) .=. F n

i±(xi ∓ c0∆t) (12)

where Fi±(x) is the interpolation function defined for the interval [xi∓1, xi].
In CIP method, the third order polynomial is used for the interpolation function Fi±(x).

F n
i±(x) = a±X3

i + b±X2
i + c±Xi + fn

±(xi) (13)

where Xi = x−xi. Although the third order polynomial is usually defined by four grid points, it
is defined by two adjoining grid points in CIP method at which field values and their derivatives

i
x

t

n

i-1 i+1

n+1

c0∆t-c0∆t

fn(xi – c0∆t)

fn(xi+c0∆t)

fn+1(xi)±

–

+

Figure 1. Characteristic curve.
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∂f±/∂x ≡ g± are defined. This means that the derivative of field value is also advected. The
interpolation function for derivative defined for interval [xi∓1, xi] is given as

Gn
i±(x) = 3a±X2

i + 2b±Xi + c± (14)

where

a± = ±
2{fn

±(i ∓ 1) − fn
±(i)}

(∆x)3
+

gn
±(i ∓ 1) + gn

±(i)

(∆x)2
(15)
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(∆x)2
±

gn
±(i ∓ 1) + 2gn

±(i)

∆x
(16)

c± = gn
±(i) (17)

where f(i) and g(i) are the field value and its derivative at x = xi and ∆x is distance between
grid points. Using equations (13) and (14), the field values and their derivatives at the next time
step n + 1 are expressed as

fn+1
± (xi) .=. F n

i±(xi + ξ) = a±ξ3 + b±ξ2 + gn
±(i)ξ + fn

±(i) (18)

gn+1
± (xi) .=. Gn

i±(xi + ξ) = 3a±ξ2 + 2b±ξ + gn
±(i) (19)

where ξ = ∓c0∆t.

3.2. Non-advection phase

Next we consider the dispersion and nonlinear terms shown in the right side of equations (6)
and (7).

h± =
δ1

2ρ0

∂2
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(f+ + f−) ± δ2c0

2Z

∂2
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(f+ − f−) − β

2Z
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These terms are non-advection terms which are calculated after the advection phase by the
following equations

∂f∗
±

∂t
= h∗

± (21)

∂g∗
±

∂t
=

∂h∗
±

∂x
(22)
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where superscript ∗ denotes the solution obtained by the advection phase. The time development
equations are given as

fn+1
± (i) = f∗

±(i) + h∗
±(i)∆t
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2∆x
(24)

3.3. CIP-CSL4 method

A more accurate CIP scheme has been proposed as CIP-Conservative Semi-Lagrangian of the
4th order (CIP-CSL4) method[4]. In CIP-CSL4 method, the fourth order polynomial is used
for the interpolation function Fi±(x) and its derivative Gi±(x) is the third order, which are
respectively given as

F n
i±(x) = a4±X4

i + b4±X3
i + c4±X2

i + d4±Xi + fn
±(i) (25)

Gn
i±(x) = 4a4±X3

i + 3b4±X2
i + 2c4±Xi + d4± (26)

To define the fourth order polynomial, the integrated value between two grid points is introduced
as follows

sn
±(i ∓ 1

2
) =

∫ xi

xi∓1

F n
i±(x)dx = ±a4±

5
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4
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3
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2
(∆x)2 ± fn

±(i)∆x (27)

where
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The field values, their derivatives and integrated value at the next time step n + 1 are expressed
respectively as

F n
i±(xi + ξ) = a4±ξ4 + b4±ξ3 + c4±ξ2 + gn

±(i)ξ + fn
±(i) (32)

Gn
i±(xi + ξ) = 4a4±ξ3 + 3b4±ξ2 + 2c4±ξ + gn

±(i) (33)

sn+1
± (i ∓ 1/2) = sn

±(i ∓ 1/2) + ∆sn
±(i ∓ 1) − ∆sn

±(i) (34)

where

∆sn
±(i) =

∫ xi

xi+ξ

F n
i±(x)dx = −a4±

5
ξ5 − b4±

4
ξ4 − c4±

3
ξ3 −

gn
±(i)

2
ξ2 − fn

±(i)ξ (35)

The non-advection term for the integrated value is given as

∂s

∂t
=

∫
h∗
±dx (36)

The time development equation for the integration is given as

sn+1
± (i) = s∗±(i) + ∆t

∫ xi

xi∓1

h∗
±dx

= s∗±(i) +
δ1∆t

2ρ
{g∗

+(i) + g∗
−(i) − g∗

+(i ∓ 1) − g∗
−(i ∓ 1)}

+
δ2c0∆t

2Z
{g∗

+(i) − g∗
−(i) − g∗

+(i ∓ 1) + g∗
−(i ∓ 1)} (37)

4. NUMERICAL EXPERIMENTS

To verify the validity of the present schemes, some numerical examinations are made for the
nonlinear sound propagation in air. An acoustic pipe of 34m in length is considered for the one-
dimensional model. Number of grid points is 20000 and the grid spacing is ∆x = 1.7mm. The
time step ∆t is chosen to be 2.5µS where CFL number is 0.5. The sound speed c0 is 340m/s,
the medium density ρ0 is 1.2kg/m3 and the nonlinearity parameter β is 1.2. A single-shot pulse
of sinusoidal whose amplitude and frequency are 400Pa and 5kHz is given around x = 1m as
the initial pressure at t = 0.

The linear wave propagation is first demonstrated. Figure 2 shows the pressure distribution
as the wave propagates until the time 2ts where

ts =
ρ0c

2
0

βωp0

(38)

is the shock formation time. In the figure, the thin red line indicates the CIP solution, the bold
line indicates the CIP-CSL4 solution and the dashed line indicates FDTD solutions whose cal-
culation conditions are same with CIP method. Both CIP and CIP-CSL4 solutions well agree
with the exact solution, although the numerical dispersion error appears in the FDTD solution.

Figure 3 shows the numerical results of nonlinear wave propagation. In the figure, the bro-
ken line indicates the analytical solution calculated by the Cole-Hopf transformation of Burgers’



7

3.0 3.1 3.2
–500

–250

0

250

500

x (m)
1.4 1.5 1.6 1.7

x (m)

so
u
n
d
 p

re
ss

u
re

 (
P

a)

–500

–250

0

250

500
so

u
n
d
 p

re
ss

u
re

 (
P

a)

6.1 6.2 6.3 6.4
x (m)

–500

–250

0

250

500

so
u
n
d
 p

re
ss

u
re

 (
P

a
)

FDTD
CIP–CSL4
CIP
Exact

(a) t = 0.5ts

(c) t = 2ts

(b) t = ts

Figure 2. Sound pressure distribution of linear wave.
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Figure 3. Sound pressure distribution of nonlinear wave.

equation[5]. The results calculated by CIP method and CIP-CSL4 method well agree with the
analytical solution until t = ts. As the nonlinear distortion becomes strong, the waveforms cal-
culated by FDTD method however collapse because of the numerical dispersion. Although the
shock formation can not be confirmed in the FDTD solutions, the shock fronts are clearly cal-
culated in the CIP and CIP-CSL4 solutions. As the wave propagates, the attenuation becomes
little larger in the CIP solution because of the numerical dissipation. Although the numerical
dissipation hardly appears in the CIP-CSL4 solution, the overshoots appear in the shock fronts
at t = 2ts.

Figure 4 shows the numerical results of nonlinear wave propagation calculated by the
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Figure 4. Sound pressure distribution of nonlinear wave calculated by FDTD method.

FDTD method using the finer mesh size. In the figure, the bold line indicates the FDTD solution
whose grid points are twice as much as Figure 3 and the dashed line indicates 4 times as much.
It is found that the numerical dispersion doesn’t disappear even if the grid points increases.

5. CONCLUSIONS

We have examined the numerical simulation of nonlinear sound wave propagation in time do-
main by using CIP method and CIP-CSL4 method under the assumption of weak shock. Some
numerical demonstrations are made for the one-dimensional nonlinear sound propagation in air.
It is verified that the shock front is clearly calculated using CIP method or CIP-CSL4 method,
because the numerical dispersion is hardly caused in these methods.
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