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Abstract

In general, inverse acoustic problems are ill-posed. Without any proper regularization action
taken, noisy measurements result in an increasingly useless solution as the distance from the
measurement plane to the desired source grows. Two distinctive steps take place in the reg-
ularization process for planar near-field acoustic holography (PNAH); first the low-pass filter
function is defined and secondly a stopping rule is applied to determine the parameter settings
of said filter. A number of well-known and newly developed filter functions and stopping rules
are discussed and compared to one another, carefully listing the pros and cons. In acoustic
imaging practice it has proven to be very hard to determine the right filter for a certain case
combined with the automatic search for the near-optimal parameters. This paper presents a
novel method that combines fitted filters for a broad number of possible experimental sources
combined with highly efficient stopping rules, by taking advantage of k-space. Results based
on actual measurements demonstrate the effectiveness, applicability and precision of the fully
implemented and automated regularization process for PNAH. Implementations include modi-
fications of Tikhonov, exponential and truncation low-pass filters, L-curve, Generalised Cross-
Validation (GCV) and the novel Cut-Off and Slope (COS) parameter selection methods for
PNAH.

1. INTRODUCTION

Near-field Acoustic Holography dates back to the early 1980s when Williams [1] suggested that
a large portion of source information is available in the near-field of a sound source. Evanescent
waves attenuate with an exponential power as a function of distance from the sound source. To
detect evanescent waves, a fine grid of measurement positions is required at a fixed distance
from the source, yet within the near-field. The acquired field information is called a hologram,
which contains all necessary information required to identify the sound source. Source infor-
mation that is determined by calculation of the inverse solution of the wave equation. Noise in
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the hologram measurements is very susceptible for blow-up in the inverse solution, especially
at higher wavenumbers. A wide variety of methods to regularize ill-posed problems in general
are discussed in [2], whereas more recently [3] focussed on regularization methods for NAH.
This paper shortly discusses the basic PNAH theory, followed by a brief listing and discussion
of regularization in k-space, which is split up in filter functions and stopping rules. More elabo-
rate discussions, derivation and numerical analysis of said functions and methods can be found
in [4]. Following the theoretical outline, the used measurement set-up and post-processing pro-
cedures are presented. The examined sources are two closely spaced holes in a large baffle
connected to an isolated speaker at the back. The results of k-space application of five filter
function combined with the two general stopping rules, GCV and L-curve, are illustrated. One
of the main conclusions is the importance of a variable filter slope, combined with a stopping
rule capable of handling two or more filter parameters. The COS iteration method with a modi-
fied exponential filter is such an example that demonstrates its effectiveness and accuracy in our
automated PNAH measurement system.

2. PNAH AND REGULARIZATION THEORY

2.1. PNAH Discretization

The inverse solution to the acoustic wave equation by means of PNAH [5] for an infinitely wide
plane to another infinitely wide plane in a continuous, source-free space forz > 0 is exact.
Due to practical limitations, namely the finite aperture and discrete spatial sampling, a discrete
solution is required. A two-dimensional FFT determines the k-space spectrum from the discrete
spatial measurements. The discrete solution of the wave-equation for a certain signal frequency
fs in k-space at the hologram distancez = zh to a source distancez (for z > 0) is a relatively
straight-forward multiplication:

p̂d(kx, ky, z) = p̂d(kx, ky, zh)e
jkz(z−zh). (1)

From1 it follows that we need to determinekz from the wavenumbers in bothx− andy−direction,
i.e. kx andky, and the acoustic wavenumberk that follows fromfs and speed of soundc0. In
k-spacekz is determined bykz = ±√

k2 − k2
x − k2

y, with kxy =
√

k2
x + k2

y. The radiation circle
kr is positioned at

kxy = k =
2πf

c0

. (2)

For kxy ≤ kr waves are propagating, whereas forkxy > kr waves are evanescent in nature. K-
space provides a clear distinction of increasingly higher wavenumbers by moving outward from
the center of the two-dimensional spectrum. Evanescent waves are most beneficial for providing
spatially detailed information to the acoustic source image.

2.2. Low-Pass Filter Functions

The blow-up of noise at the source is generally suppressed by application of a low-pass k-
space filter, cf. [4]. The resulting five filter functions are provided below, which are used in
the regularization process of the experimental data. Firstly, the general form exponential filter
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function is given by

Hkco,γ
f =

{
1− 1

2
e−(1−kxy/kco)/γ, 0 < kxy < kco,

1
2
e(1−kxy/kco)/γ, kxy ≥ kco,

(3)

where the slope is determined by the factorγ and the k-space cut-offkco. The modified expo-
nential filter, especially fit for near-field inverse problems, is given by

Hkco,φ
f =





1, kxy < kco − kevφ,
1
2

+ 1
2

cos
(
kxy − (kco−kevφ)

2kevφ
π
)

,

kco − kevφ ≤ kxy ≤ kco + kevφ,

0, kxy > kco + kevφ,

(4)

wherekev is the useful evanescent k-space content, orkev = kco − kr, andφ the taper ratio
between0 and1. Notice that this filter only affects information outside the radiation circle. The
general form Tikhonov [6] filter function takes the inverse pressure to pressure propagation into
account and is written as

Hλ
f (kxy) =

1

1 + λ2e−2j
√

k2−k2
xy(z−zh)

, with λ = ej
√

k2−k2
co(z−zh). (5)

A high-pass filter functionHλ
f,hp(kxy) is used in a modification of the general form Tikhonov

filter and adds a certain weight to the higher wavenumbers. This novel addition makes it possible
to influence the filter slope behavior by inserting different high pass filters in the modified
Tikhonov filter function:

Hλ
f (kxy) =

g2
i

g2
i + λ2(Hλ

f,hp(kxy))2
. (6)

Any of the other low-pass filters can be written in their high-pass form and used in Equation (6).
Finally, the low-pass truncation filter is simple and straight forward; it passes the band up tokco

and stops all wavenumbers higher thankco:

Hkco
f =





1, kxy < kco,
1
2
, kxy = kco,

0, kxy > kco.

(7)

2.3. Stopping Rules

For low-pass filter functions to become effective in inverse problems, their parameters need to
be chosen carefully. Stopping rules provide an automated selection criterion based on a trade-
off between perturbation and filter errors. In [4] three types of error estimate free stopping rules
are derived for specific application in k-space. The first stopping rule is the L-curve criterium; a
logarithmic plot of the perturbation versus the filter error. The vertical axis represents the norm
of the inverse solution, which is bound to blow up whilekco increases (under-regularization),
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and is written as
η(kco) = ‖p̂sf‖2. (8)

The horizontal axis exhibits the norm of the difference between the filtered and unfiltered data,
thus indicating the error due to the filter:

ρ(kco) =
∥∥(Hf − In)p̂h

∥∥
2
. (9)

The point of maximum curvature between the horizontal and vertical part of the L-shaped curve
is generally chosen as the near-optimal solution. The cut-offkco that represents this point is
used as the resulting filter cut-off. In discrete problems, an adaptive pruning algorithm is imple-
mented to determine the point of maximum curvature [7].
The GCV [8] function in k-space has a global minimum value forkco, which represents a trade-
off between over-smoothing and blow-up of noise:

GCV (kco) =
‖(I − Hkco

f )‖p̂h

Tr[(I − Hkco
f )G]

, (10)

whereI is the identity matrix andG the forward propagation matrix. The numerator is dom-
inated by the mean squared regularization error (comparable to the horizontal axis in the L-
curve), while the denominator represents the perturbation error (vertical axis in the L-curve).
A newly developed method is the so-called COS iteration, which basically changes slope and
cut-off of the modified exponential filter independently. The property that distinguishes this
method is the importance of a variable filter slope and the significant influence on the results
depending on the spatial properties of the measured field. Ordinary stopping criteria like GCV
are used to determine the proper set. Practical difficulties in determining the point of maximum
curvature in a three-dimensional L-curve, force the definition of a single minimizer as

ζ(kco, φ) = ρ(kco, φ)η(kco, φ). (11)

Cut-off kco and slopeφ corresponding to the global minimum ofζ are picked as modified
exponential filter parameters, which is referred to as theζ criterium. For the practical cases both
the GCV andζ criteria are applied for the COS iteration.

3. MEASUREMENT SET-UP AND POST-PROCESSING

The measurement set-up used for the practical cases shown in the next section is situated in a
semi-anechoic room (Figure1). An automated traverse system (Figure1c) moves a microphone
beam (Figure1a) over a pre-defined grid in front of the baffled source. The used sensor is a
low-noise, omni-directional, miniature Sonion 8002 microphone with a typical diameter of only
0.0025m. These small dimensions make the sensor very suitable for near-field measurements
relatively close to a sound source, without disturbing the acoustic field due to its presence. Every
grid measurement is carefully phase matched to the reference microphone at the back of the
baffle, mounted in the tube that connects an isolated speaker to the back-plate of the aluminium
baffle part, shown in Figure1b. The tube is split up and connected to two channels in the center
of the aluminium source plate, creating two coherent point sources with about0.04m horizontal



ICSV14• 9–12 July 2007• Cairns• Australia

(a) microphone beam during measurement of a
hologram position

(b) isolated speaker connected to the backside of
the baffle

(c) overview of baffle and sensor traverse system
in a semi-anechoic room

(d) close-up of the aluminium plate with various
pattern possibilities

Figure 1.measurement setup of baffled point sources in a semi-anechoic room; the hologram is spatially
sampled by a single miniature microphone mounted on a traversing beam

spacing between. The front-side view of these two sources in depicted in Figure1d, the grid-
size is25x25 points with0.005m spacing in horizontal and vertical direction.
The speaker inside the black box is excited by a Siglab data acquisition system connected to an
amplifier, the measured pressures are fed back into the Siglab for post-processing. The control
of the traverse system, excitation of the source, measurement and post-processing of all grid
positions are fully integrated and automated by the in-house developed NAH software package.
The post-processing software contains a regularization toolbox that incorporates all previously
mentioned filters and stopping rules.

4. EXPERIMENTAL RESULTS

The experimental results presented here are extracted from a large number of measurements as
described in the previous section, at holograms with distances ofzh = 0.001m to zh = 0.002m

from the source. The influence of the filter functions and stopping rules is observed in Figure2.
The GCV generally manages to over-regularize compared to the L-curve criterium, which can
be concluded from the differences in cut-offs that are found for the same filter function. Also,
since the L-curve consistently manages to find a higher appropriate cut-off, the resulting source
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(a) GCV & exp. filter;γ = 0.3, kco = 224 rad
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(b) L-curve & exp. filter;γ = 0.3, kco = 248 rad
m
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(c) GCV & mod. exp. filter;φ = 0.3, kco = 221 rad
m
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(d) L-curve & mod. exp. filter;φ = 0.3, kco = 343 rad
m
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(e) GCV & Tikh. filter; kco = 224 rad
m
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(f) L-curve & Tikh. filter; kco = 343 rad
m
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(g) GCV & mod. Tikh. filter;kco = 201 rad
m
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(h) L-curve & mod. Tikh. filter;kco = 367 rad
m
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(i) GCV & trunc. filter; kco = 201 rad
m
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(j) L-curve & trunc. filter;kco = 343 rad
m

Figure 2.Comparison of five filter types combined with two stopping rules; leftmost plots show the
stopping function (GCV or L-curve), center plots show the resulting low-pass filter and the rightmost
plots provide the filtered result of PNAH at the source plane forfs = 1881Hz andzh = 0.015m

images are sharper, of higher sound pressure level and closer to the spatial dimensions of the
two point sources when compared to the GCV results. On the other hand, the L-curve results
already show high influence of noise in the result, illustrating the trade-off between useful data
and noise blow-up.
In all cases, the L-curve criterium creates clear L-shaped curves and the GCV functions show
distinct global minima, thus regularization parameters are determined easily. Although most of
the cut-offs of the respective stopping rules lie in the same range, the filter slopes differ con-
siderably. The general form exponential and Tikhonov filters mainly show a very smooth slope,
while the truncation filter ordinarily displays an infinitely steep slope. The modified exponential
and Tikhonov filter slopes lie somewhere in between and are easily adjustable. Considering the



ICSV14• 9–12 July 2007• Cairns• Australia

Table 1.Cut-Off and Slope iteration results atfs = 1428Hz
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qualitative comparison, both Tikhonov filters and the modified exponential filter perform best
when combined with the L-curve. The general form exponential filter’s slope is too smooth to
make a good trade-off between noise and high spatial changes thus showing a large portion of
noise blow-up and too few spatially important source information. The trunction filter is the
opposite; it allows high spatial changes, yet ringing artifacts due to the infinite slope tend to
distort the results too much.
COS iteration with the GCV andζ criterium show clear differences in results at the source
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plane, as can be observed from the images in Table1. The results at0.02m, 0.015m and0.01m

are either the measured holograms or results ofζ COS filtered forward or backward PNAH so-
lution. Theζ criterium results with a hologram plane0.005m further away from the source than
the hologram used as input for the GCV criterium based rule, show equal results at the source,
meaning theζ criterium regularizes less and reveals more high spatial frequency information,
without blowing up too much noise. Also theζ criterium solution at the source is by far the
sharpest display of the actual point source size and displays the highest sound pressure levels,
without blowing up noise. Not only does theζ criterium COS iteration perform well for this
case, it has also shown to be the best choice for numerous other test cases that have been per-
formed. Besides all the filter issues, this table illustrates the importance of hologram distance
and the exponential loss of near-field information over very short distances.

5. DISCUSSION

The ζ criterium based COS iteration combined with the modified exponential filter shows to
be an automated regularization method that results in near-optimal solutions to the PNAH in-
verse process for a broad number of practical cases. This is due to the fact that the modified
exponential filter is easily adjustable in both slope and cut-off, combined with an L-curve based
criterium that is significantly more progressive compared to the GCV stopping rule. The GCV
stopping rules mainly over-regularizes, which could in turn be the proper stopping rule when
measurements contain low signal to noise ratios [4]. Five different filter functions for k-space
application are given, combined with two stopping rules for filter parameter selection. A prac-
tical, qualitative comparison of these filters and stopping rules is given, resulting the sharpest
source results for general and modified Tikhonov and modified exponential filters combined
with the L-curve stopping rule. The presented results of the COS iteration are completely auto-
matically generated, resulting in a fully automated and software implemented PNAH method.
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