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Abstract 
 
A design sensitivity formulation of Zwicker’s loudness is presented using the adjoint variable 
method (AVM). The dynamic behaviour of a structure is analyzed by the frequency-response 
method. Acoustic pressure radiated from the vibrating structure is obtained by the Boundary 
Element Method (BEM). The global acoustic sensitivity is calculated using AVM, and the 
sensitivity of main specific loudness with respect to the design variables is obtained using the 
chain rule. The proposed sensitivity result is compared to finite difference sensitivity. It turned 
out that the computational time for calculating sensitivity is extremely reduced, and the 
sensitivity result is similar to the result of the finite difference method.  

1. INTRODUCTION 

For the purpose of just noise reduction, A-weighted sound pressure level is an adequate 
parameter for designing products. However considering human’s subjective feelings on the 
sound, the A-weighted level is not sufficient to present the relation of physical sound stimulus 
with the human perceptual judgement. Sound quality is based upon the idea that lower sound 
levels are not always better, and subjective judgement on the sound of the products is more 
important than the sound pressure level. Zwicker and Fastl defined sound quality metrics, such 
as loudness, sharpness, roughness, fluctuation strength, etc. [1]. The Loudness is a measure for 
how loud or how soft a sound is heard relative to a standard sound. It is the most important 
metric among the sound quality parameters. By using the loudness, engineers can improve the 
sound quality and reduce the sound pressure level. The loudness models of Stevens and 
Zwicker are adopted as international standard [2]. 

In order to develop and improve the products, optimization process should be carried out 
in systematic development. But there isn’t sufficient research on reducing the loudness using 
design sensitivity analysis (DSA). In a gradient-based optimization, it is important to calculate 
the sensitivity of object function and constraints with respect to the design variables [3]. As 
increase of model size, the number of the design variable is also increased, which is 
proportional to time consumption for calculating sensitivity in the optimization.  

Some researches about DSA of a structural-acoustic problem have been reported. Wang 
[4] proposed continuum DSA of a coupled vibro-acoustic system using finite element method 
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(FEM). Wang and Lee [5] and Kim and Choi [6] calculated global acoustic design sensitivity 
using structural sensitivity in the FEM and acoustic sensitivity in the BEM for semi-coupled 
problems. Wang and Kang [7] calculated the sensitivity of the main specific loudness using 
semi-analytical method. The derivative of the main specific loudness is formulated using the 
loudness proposed by Zwicker et al.[8]. In this paper, the DSA of Zwicker’s loudness is derived 
by employing the AVM in the vibro-acoustic system. 

EVALUATION OF ZWICKER’S LOUDNESS 

The evaluation model of the Zwicker’s loudness makes a start with the concept of the specific 
loudness. The specific loudness comes from Stevens’ law that a sensation belonging to the 
category of intensity sensation grows with physical intensity according to a power law. The 
formula of the main specific loudness is in ISO 532 B [2]: 
 
  

 ( ) 0.250.025 0.1( )0.0635 10 1 0.25 10 1 ( / )TQ E TQL L L
GNM sone Bark−⎡ ⎤⎡ ⎤= ⋅ ⋅ + ⋅ −⎣ ⎦⎢ ⎥⎣ ⎦

  (1) 

 
NM  is the main specific loudness defined in 1/3-oct band, TQL  is excitation level at threshold 
in quite and EL  is excitation level. To calculate excitation level, some corrections are added. 
For 1/3-oct band filters, low frequency range is added and correction factor is used at all bands. 
And the logarithmic transmission factor to represent the transmission between free field and our 
hearing system is incorporated. 
 
 0 1E bandL P a c= − −   (2) 
 
where 

 ( )0.5
2

band refΔω
P 20 log p dω/Δ /p dBω⎡ ⎤= ⎢ ⎥⎣ ⎦∫   (3) 

 
where Δω  is frequency bandwidth, refp  is reference sound pressure, 20e-6 pa. 
 

GLOBAL ACOUSTIC DESIGN SENSIVITY ANALYSIS 

The purpose of DSA is to compute the dependency of performance measures on the design 
variable. Assume that ( )ψ u  is continuously differentiable with respect to design u . The 
perturbation of the design is δu  (arbitrary), and τ is a parameter that controls the perturbation 
size, then the variation of ( )ψ u  in the direction of δu  is defined as [9] 
 

 '

0

( )
Td

dδ
τ

ψψ ψ τδ δ
τ =

∂
≡ + =

∂u u u u
u

  (4) 

 
If the variation of a function is continuous and linear with respect toδu , the function is 
differentiable. 



ICSV14 • 9-12 July 2007 • Cairns • Australia 

3 

 
0

' [ ( , )]
Td v x

d τ

ψ τδ δ
τ =

∂
= + =

∂
vv u u u
u

  (5) 

and 
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u
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τ =
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  (6) 

 
where 'v  is structural sensitivity and 'p  is acoustic sensitivity. In the vibro-acoustic system, 
the structural velocity is the boundary information of acoustic boundary element model. So the 
structural behaviour must first be computed, and then structural analysis results can be used as 
boundary conditions to compute radiated sound pressure p . If 0x  is a point on the acoustic 
boundary surface then the boundary integral equation can be expressed as follows from the 
Neumann boundary condition p/ jωρvn∂ ∂ = −n  [5] 
 

 ( ) ( ) ( ) v
S0 0 nΩ

Gc x p x p x jω ρ G dΩ
n

∂⎡ ⎤= ⋅ + ⋅⎢ ⎥∂⎣ ⎦∫   (7) 

 
where ρ  is the fluid density, )( 0xc  is the coefficient with respect to  field point, and vn  is the 
normal velocity. For derivational convenience, Eq. (7) can be written as 
 
 0 0 0 0( ; ) ( ; ) ( ) ( )sb e c p+ =x v x p x x    (8) 
 
where ( )0x ;b •  and ( )0x ;e •  are linear integral forms that correspond to the right-hand side of 
Eq. (7) and . If the field point 0x  is positioned at the boundary, then the Eq. (8) can be 
represented as following linear equation: 
 
 [ ]{ } [ ]{ }A P B vs =   (9) 
 
where [ ]A  and [ ]B   are the coefficient matrix composed by complex numbers. Once { }sp  has 
been computed, Eq. (8) can be used to compute the acoustic sensitivity at any field point in the 
acoustic domain using Eq. (6) and (9). 
 

 
( ) ( ){ } { } ( ){ } { }

( ){ } ( ){ } [ ] [ ] { }

† †' ''
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0 0

x b x v e x p
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−
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  (10) 

 
Let’s consider the acoustic performance at the field point 0x  

 ( )0xpψ =   (11) 
 
The variation of the performance measure w.r.t. the design variable becomes 
 

 

† † † †
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∂
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To solve the Eq. (12) using adjoint variable, structural harmonic equation should be considered. 
The variational equation for the harmonic response problem can be expressed as 
 

 ( ) ( ) ( )u u uv,z v,z z , zj d a Zω κ+ = ∀ ∈   (13) 

 
where ( )u ,d • •  is kinetic sesqui-linear form, ( )u ,a • •  is structural sesqui-linear form, ( )u •  is 
semi-load linear form, and 1κ ϕ= +  with structural damping coefficient ϕ  [6].  
After the structure is approximated using finite elements, the following system of matrix 
equation is obtained. 
 
 [ ] ( ){ } ( ){ }M v fj Kω κ ω ω+ =   (14) 
 
By taking variation of both sides of Eq. (14) w.r.t. the design variable, and by moving explicit 
terms to the right side, the structural sensitivity equation can be obtained: 
 

 [ ] [ ] [ ]{ } [ ]{ }1'v M K f M v K v u
u

j jω κ ω κ δ
− ∂ ⎡ ⎤⎡ ⎤= + − +⎣ ⎦ ⎣ ⎦∂

  (15) 

 
where superposed tilde ( )∼  indicates a variable held constant during the partial differentiation. 

After substituting the Eq. (15) for 'v of Eq. (12), the global acoustic sensitivity equation can be 
obtained: 
 

 

[ ] [ ] [ ]{ } [ ]{ }

† † † †

† †
1

vu u u
u u v u

u M K f M v K v u
u v u

d p d
d p d

p j j
p

ψ ψ ψδ δ δ

ψ ψδ ω κ ω κ δ
−

∂ ∂ ∂
= +
∂ ∂ ∂

∂ ∂ ∂ ∂ ⎡ ⎤⎡ ⎤= + + − −⎣ ⎦ ⎣ ⎦∂ ∂ ∂ ∂

  (16) 

 
From Eq. (16), the constant terms about design derivative can be substituted by adjoint variable 
λ  as  
 

 { } [ ] [ ]
†

1† p M K
p v

jψλ ω κ
−∂ ∂

⎡ ⎤= +⎣ ⎦∂ ∂
  (17) 

 
At the Eq. (17), by moving the inverse term to the left side and multiplying the virtual adjoint 
displacement, structural adjoint equation can be obtained: 
 

 { } [ ] [ ] { } { }
†

† M K
v
pj

p
ψλ ω κ λ λ∂ ∂

⎡ ⎤+ =⎣ ⎦ ∂ ∂
  (18) 

 
In the Eq. (18), adjoint variable λ  is the displacement at the original model when adjoint load 

†

v
p

p
ψ∂ ∂
∂ ∂

 is applied on the structure. Adjoint load can be calculated by the acoustic adjoint 

equation using Eq. (10). Then we obtain the structural adjoint problem as 
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 [ ] [ ] { } { } [ ] { }†*M K b Bjω κ λ η⎡ ⎤+ = +⎣ ⎦   (19) 
 
where { }η  is the acoustic adjoint solution derived from [ ] { } { }†A eη = . 
 

DSA OF ZWICKER’S LOUDNESS 

 
In many cases loudness pattern diagram clearly shows which partial area is dominant. It is 
efficient to reduce the dominant part of the noise that produces the largest area in the loudness 
pattern. So reducing the main specific loudness contributes largely reducing total loudness. 
This procedure is efficient especially because of making effect. In Eq. (1), the main specific 
loudness has not structural design variables. To calculate sensitivity with respect to structural 
design variable, chain rule is used as below. 
 

 
u u

E

E

LNM NM
L

∂∂ ∂
= ⋅

∂ ∂ ∂
  (20) 

 
The first derivative can be derived directly from Eq. (1). Because TQL  is constant in the specific 
octave band, ELNM ∂∂ /  is constituted by the excitation level. And the second term is equal to 

uPband ∂∂ /  because of 0a  and 1c  which are constant in Eq. (2). By chain rule, uPband ∂∂ /  can 
be obtained as 
 

 
( ) 1

10
ln10

2

Δωband
Δω

p dω/ΔP p p dω
u Δ

ω

ω

−

∂ ′= ⋅ ⋅ ⋅
∂

∫
∫   (21) 

 
where p′  is global acoustic design sensitivity. 

NUMERICAL EXAMPLE 

Numerical example is a simple aluminium box model with 30mm thick walls, considered as 
rigid wall, and 1 flexible steel plate (1mm) [10]. Acoustic medium is air, and wave propagation 
velocity c  is344m/s . Structural damping coefficient ϕ  is 0.11 , and a harmonic force 1.0Nf =  
in the y direction is applied at four points on the flexible plate as shown in Figure 1(a). Figure 
1(b) shows real model of the aluminium box. In this paper, only the sensitivity of analysis 
model was considered. The acoustic field point is 0.5m apart from the centre of the flexible 
plate. The structural and acoustic response of the model is calculated by using commercial tools, 
ANSYS and COMET.  Figure 2 demonstrates the narrow band graph (a), 1/3 octave band graph 
(b), and Loudness pattern (c) w.r.t. same frequency responses. The highest value of the acoustic 
pressure of analysis in the Figure 2(a) is 91.17dB at 236Hz which is the resonance frequency of 
the box. This frequency is only used to evaluate the harmonic and acoustic sensitivity as target. 
And the 3rd critical band level is biggest one indicating 7.458  sone/bark. The specific loudness 
of the 3rd critical band is chosen as objective function. In the sensitivity analysis, the derivative 
of object function w.r.t. the design variable is equal to the sensitivity.  
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 (a) Geometry and analysis model of box         (b) Real model 
 

Figure1. Aluminum box model for sensitivity 
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(a) Narrow band graph       (b) 1/3-oct band graph 
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(c) Loudness pattern 

 
Figure2. Analysis results of the aluminum box 

DESIGN SENSITIVITY ANALYSIS RESULTS  

To confirm the loudness sensitivity, the structural and the acoustic sensitivity at the resonance 
frequency of the box should be validated. All processes for calculating the design sensitivity are 
operated by In-house code, ANSENS. Figure 3(a), (b), and (c) represents the plot of the 
harmonic sensitivity, the acoustic sensitivity, and the loudness sensitivity result respectively. 
Central finite difference method (FDM) is used to validate the AVM results.  

In the table 1, 2, and 3, Δψ / 2 uδ  is obtained by the FDM, and 'ψ  is the predicted design 
sensitivity using the AVM. The design perturbation 5u 1.0 10 mδ −= ×   is corresponding to 1% 
perturbation. Harmonic sensitivity is same with the result by FDM as shown in Table 1. In the 
case of the acoustic sensitivity, the results of the FDM and the AVM are not precisely identical. 
But the distribution of the sensitivity has similar pattern in Table 2.  By using the chain rule in 
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Eq. (20), the loudness sensitivity is compared with the results by FDM in Table 3. In spite of the 
some errors in the acoustic sensitivity, the loudness sensitivity of AVM and FDM are almost 
same. It may be caused by averaging process of errors in the calculation of bandP  in Eq. (3). If the 
FDM is used for the calculation of sensitivity on the aluminium box model, 154 design 
sensitivity equations must be solved. However with the AVM, only one adjoint equation is 
needed to calculate the sensitivity of all design variables. Therefore the calculation time for 
sensitivity of this model can be reduced about 154 times compared to FDM.  

 

          
(a) Harmonic sensitivity          (b) Acoustic sensitivity   (c) Loudness sensitivity 

 
Figure3. Sensitivity plot at the resonance frequency and 3rd critical band 

 
 

Table1. Harmonic sensitivity verification for aluminium box model 
 

DV 
Number 

Perturbation
uδ [%] 

ψ( u)d δ+  
m 

ψ( u)d δ−
m 

Δψ / 2 uδ  
m/m 

'ψ  
m/m 

Accuracy 
Δψ/'ψ (%)

67 1.39924E-04 1.40168E-04 -1.21838E-02 -1.21807E-02 99.97455 

77 
1 

1.39894E-04 1.40198E-04 -1.52283E-02 -1.52254E-02 99.98080 

 
 

Table2. Acoustic sensitivity verification for aluminium box model 
 

DV 
Number 

Perturbation
uδ [%] 

ψ( u)d δ+  
dBL 

ψ( u)d δ−
dBL 

Δψ / 2 uδ  
dBL/m 

'ψ  
dBL/m 

Accuracy 
Δψ/'ψ (%)

67 7.17770E-01 7.19023E-01 -6.26500E+01 -5.26738E+01 84.07636 

77 
1 

7.17767E-01 7.19025E-01 -6.29000E+01 -5.29346E+01 84.15675 

 
 

Table3. Sensitivity verification for aluminium box model 
 

DV 
Number 

Perturbation
uδ [%] 

ψ( u)d δ+  
sone/Bark 

ψ( u)d δ−
sone/Bark 

Δψ / 2 uδ  
sone/(Bark*m)

'ψ  
sone/(Bark*m) 

Accuracy 
Δψ/'ψ (%)

10 7.43988E+00 7.39642E+00 2.17322E+02 103.23804 

1 7.42015E+00 7.41577E+00 2.18998E+02 102.44814 67 

0.1 7.41818E+00 7.41774E+00 2.19190E+02

2.24359E+02 

102.35861 

10 7.43991E+00 7.39637E+00 2.17694E+02 103.25536 

1 7.42015E+00 7.41577E+00 2.19387E+02 102.45873 77 

0.1 7.41818E+00 7.41774E+00 2.19254E+02

2.24781E+02 

102.52054 
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  CONCLUSIONS 

 
In this paper, the design sensitivity analysis of the Zwicker’s loudness is developed using the 
AVM. The loudness is more appropriate to express the human hearing than the sound pressure 
level. Structural FEM, acoustic BEM and ISO 532 B method are used to calculate the main 
specific loudness. Calculation of the loudness sensitivity also requires three stages composed of 
the structural sensitivity, acoustic sensitivity and the derivative of loudness formula. Structural 
and acoustic sensitivities are combined into global acoustic sensitivity.  
  The design sensitivity proposed in this paper is formulated especially considering sizing 
design variable, i.e. thickness. Using the AVM, adjoint variable is calculated from a structural 
FEM with adjoint load obtained from acoustic BEM. The sensitivity of the main specific 
loudness includes the derivative of the loudness with respect to excitation level and the 
derivative of excitation level with respect to the design variable. The derivative of excitation 
level is calculated with global acoustic sensitivities. ANSENS, In-house code developed in this 
research controls all procedures for DSA of loudness by calling ANSYS and 
COMET/ACOUSTICS. A simple aluminum box model is used for numerical example to verify 
loudness sensitivity formulation. The loudness sensitivities of AVM and FDM are almost same. 
These sensitivity results give engineers the guideline to reduce loudness efficiently. Also 
sensitivity information plays the gradient role of optimization. By the proposed method, the 
analysis time can be reduced very much. 
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