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Abstract 
 
This study is concerned with the dynamic behavior of generic multi-span bridges under a 
concentrated moving load.  In this multi-span bridge model, each span can be independently 
supported by up to eight elastic springs, thus allowing a more general and realistic 
representation of many joints and intermediate supports of practical concern.  Additionally, 
since the displacement and its first derivative are no longer required to be continuous at an 
intermediate support, this model is capable of accounting for the vehicle-bridge interactions 
resulting from the possible steps and skew angles at the span junctions.  Numerical results are 
presented with a focus on the dynamic impact of the coupling conditions between spans.  It 
has been shown that the deflection on each span strongly depend upon its local coupling 
conditions, especially near the critical stiffness values defined by the bending rigidities of the 
involved beams.  A fairly large variance of response has also been observed on each span in 
correspondence to a wide range of stiffness values, which implies a good potential for 
improving bridge performance through varying joint stiffnesses and/or coupling 
configurations.  This analysis method can be readily applied to any boundary and coupling 
conditions with no need of changing or modifying the formulations or solution procedures. 

1. INTRODUCTION 

The dynamic behavior of multi-span beams under moving loads has been extensively studied 
for many years in connection with the design of railway tracks and bridges.  Although a grid-
based solution method may be considered inconvenient in dealing with the problems 
involving moving loads, the finite element method is still one of the most powerful numerical 
methods and used by many researchers [1-3].  Dynamic stiffness based method is another 
popular technique for the vibrations of beams subjected to moving loads [4-7].  Henchi and 
Fafard [4] derived the frequencies and mode shapes of a uniform continuous beam by using 
the dynamic stiffness element method under the framework of finite element approximation.  
Dugush and Eisenberger [7] presented a solution for the multi-span non-uniform beams 
transversed by a load traveling at a constant or variable velocity.  The assumed mode method 
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is also widely used to solve single- and multi-span beam problems [8-13].  Ichikawa and 
Miyakawa [12] gave a solution for a uniform continuous beam under a concentrated load 
moving at variable velocity. The solution was based on the mode superposition method and 
the final system equations in the case of variable velocity were solved numerically using the 
central difference method.  Zheng et al. [13, 14] studied the vibration of a multi-span non-
uniform beam using the modified beam vibration functions as the assumed modes.  Other 
commonly used methods include Laplace transformations [15-18], the methods of Lagrange 
multipliers [19-21], the Green’s function methods [22-26], and so on.  

Many of the aforementioned methods will require a varying degree of modifications or 
adaptations to account for the variances in boundary conditions, intermediate supports, and/or 
the number of spans.  For instance, when the unconstrained beam functions are used as the 
assume mode shapes, one typically needs to first determine the eigenfunctions for the given 
boundary conditions.  This problem itself may become a sizeable task if the beam is 
elastically restrained at either or both ends.  In addition, the beam eigenfunctions tend to 
become numerically unstable for large modal indexes, which demands special treatments in 
actual calculations.   

In most investigations, the term “multi-span beams” typically refers to a continuous 
beam with a number of intermediate supports.  Although the beams may be allowed to have 
different physical or geometrical properties for each span, the beam displacement and its first 
derivatives are required to be continuous over the entire beam length.  This condition can be 
easily violated when the translational and rotational couplings between any two adjacent 
spans are not sufficiently strong to ensure a smooth transition of the displacement and its 
derivative at the junction.  Many modern structures such as bridges, railroad tracks, and 
pipelines are assembled from some fundamental building blocks through joints.  Thus, it is 
important to extend the definition of multi-span beam to include a beam system comprising a 
number of beams co-linearly coupled together via rigid and non-rigid joints.  Accordingly, at 
the junctions the kinematic continuity requirements on the displacement function will need to 
be replaced with the dynamic equilibrium equations about the forces and moments.       

A modified Fourier series method was recently developed by Li et al. for determining the 
vibration of a single beam with elastic boundary supports [27] and the vibratory energy flows 
between two beams coupled elastically via a set of linear and rotational springs [28, 29].  This 
method was later extended to the free vibrations of multi-span beam systems.  In this 
investigation, we will study the dynamic response of a multi-span bridge to a moving load 
with emphasizing on the effects of the between-span coupling conditions.  Substantial 
insightful information has been gained through numerical simulations regarding how to 
effectively modify or improve the dynamic behavior of a multi-span bridge. 

2. DESCRIPTION OF THE ANALYSIS METHOD 

Figure 1 shows a dynamic system which consists of multiple beams coupled together via a set 
of joints represented by linear and rotational springs. The elastic springs between any two 
adjacent beams allows considering the non-rigid effect of some practical joints such as bolts 
or point welds.  The conventional rigid connectors can be considered as a special case when 
the stiffnesses of these springs become substantially larger than the bending rigidities of the 
beams.  Each of beams may also be supported on a set of elastic restraints at both ends.  All 
the traditional intermediate supports and homogeneous boundary conditions (i.e., the 
combinations of the simply supported, free, guided and clamped end conditions) can be 
readily obtained from these general boundary conditions by accordingly setting the stiffness 
constants of the restraining springs to equal to zero or infinity. 
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where, refer to Fig. 1, k denote the stiffnesses of the linear and rotational springs at 

the junction of beams i and j, respectively; 
jiji K ,,  and  

1,i0,i k~k~  ,  are the stiffnesses of linear springs, and 

1,i0,i K~K~  ,  the stiffnesses of the rotational springs at the left and right ends of beam i, 
respectively. 

All the conventional homogeneous beam boundary conditions can be considered as the 
special cases of equations (6-9).  For example, the simply supported end condition is easily 
modeled by simply setting the stiffnesses of the translational and rotational springs to be 
extremely large and small, respectively.  

 On each beam, the displacement will be sought in the form of 
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where Li is the length of i-th beam. 
In equation (10), an auxiliary function pi(x) was introduced to improve the accuracy and 

convergence of the series expansion at the end points, x =0 and Li.  It is specifically required 
to satisfy the following conditions:     
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The benefits for using such an auxiliary function were adequately discussed before in ref. 
[27] and will not be further elaborated here.   Theoretically, the auxiliary function pi(x) can 
be any continuous closed-form function defined over [0, Li].  As an example, the auxiliary 
function pi(x) will be here selected as a polynomial:  
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It should be pointed out that although the same symbol is used, the x-coordinate in 
equation (17) actually represents a local coordinate system with its origin at the left end of 
each beam.  However, the use of different local coordinate systems is simply for the sake of 
mathematical convenience.     

At this point, the auxiliary function is fully defined in terms of 4 unknown boundary 
constants, .  In what follows, these unknowns will be 
determined as the functions of the Fourier coefficients.       

T
iiiii },,,{ 1010 ββαα=α

Substituting equations (10-17) into equations (2-9) leads to   
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In matrix form, the above equations simplifies to  
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The definition of matrix  and vectors  can be found in ref. [30]. 
Equation (22) contains 4 linear algebraic equations that relate the 12 boundary constants to 
the Fourier expansion coefficients.  To determine the boundary constants, one has to apply 
equation (22), in turn, to each beam, resulting in a total of 4N equations as  
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It should be noted that the boundary and coupling conditions, equations (2-9), have been 
explicitly used in establishing the relationship between the boundary constants in the 
polynomials and the Fourier expansion coefficients.  Thus, the Fourier coefficients are now 
only required to satisfy the governing differential equation.   

Substituting Eq. (24) into (1) and following the standard Galerkin procedure, one is 
able to obtain [30] 
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3. RESULTS AND DISCUSSIONS 

In order to validate the cur first consider a multi-span 

          Figure 2. A three-span beam with non-uniform cross-section under a moving load. 

The calculated natural frequencies for the first six modes are compared in Table 2 with 
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rent model and analysis code, we will 
beam problem that was previously studied in ref. [4].  As illustrated in Fig. 2, this example 
involves a three-span stepped beam subjected to a single concentrated moving load.  The 
relevant beam and material parameters are listed in Table 1.  Under the current framework, 
this stepped continuous beam can be viewed as a collection of three separate beams that are 
rigidly coupled together.  The continuous beam is assumed to be simply supported at its ends 
and the two join locations.  The simply supported condition can be readily modeled by simply 
setting the stiffnesses of the (linear and rotational) coupling springs equal to infinity and zero, 
respectively.   
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t e given in ref. [4].  Assume the beam is subjected to a point load, NF 31048.9 ×= , 
moving at two different (constant) speeds: v =35.57m/s.  The corresponding deflections at the 
midpoint locations of the spans are plotted in Fig. 3.  The results obtained by Henchi and 
Fafard [4] are also shown there for comparison.  An excellent agreement is observed between 
these two sets of solutions.  This problem was also studied by Dugush et al. [7] for different 
beam parameters and load profiles.  It is here suffice to say that the current results also match 
closely with those given in ref. [7].    

In a traditional multi-span beam problem, the beam displacement and its first derivative 
are both required to be continuous over the entire beam length.  In many real-world 
applications, regardless of whether purposely or not, the joints between different spans cannot 
always be modeled as being infinitely rigid.  Thus, the joint stiffnesses will actually constitute 
an additional set of model parameters, just like other beam and material variables, which may 
affect the response of a bridge to an applied load.  While the effects of the beam parameters 
and loading conditions have been extensively studied, the impact of the coupling conditions 
on the dynamic response of a bridge was barely attempted before.  Therefore, the following 
discussions will be primarily focused on the role of the coupling conditions.   
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As illustrated in Fig. 2, there are up to eight independent springs associated with each 
pan in a general support/coupling configuration.  Theoretically, each of these springs can be 

cons

Figure 4. Peak-Peak deflection at the midpoint of each span for a few load profiles defined by 
a constant acceleration a = 2 m  and different initial velocities: (i)-(iii) Elastic-

The peak-peak value at the midpoint of each span is utilized to evaluate the dynamic 
behavior of the beam system.  Figure 4 shows the peak-peak values vs. the stiffness of the 
coupl

s
idered as an independent design variable, which makes it a formidable task to study a 

general case involving an arbitrary combination of these variables.  For simplicity, we will 
only consider a slightly modified version of the above beam problem: the continuity 
requirement for the first derivative is relaxed at the locations of the two intermediate supports.  
In other words, two rotational springs,  2,1K and 3,2K , of finite stiffness are now placed 
between the spans while the displacement is still assumed to be continuous over the entire 
length.  Three different configurations are considered: 1) span 1 and 2 are elastically 
connected via a rotational spring while span 2 and 3 are rigidly coupled together (ER); 2) span 
2 and 3 are elastically connected while span 1 and 2 are rigidly coupled together (RE); and 3) 
all three spans are elastically coupled together (EE).  In all these cases, the rotational stiffness 
will vary between 610  and 1010  N/m.  
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ing springs for a few different load profiles.  It is seen that as the stiffness increases, the 
deflection at the midpoint of each span typically decreases until 810≅K  (or 1≅EIKL ).  
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The dynamic responses tend to exhibit a strong dependence on the coupling stiffness near this 
“critical” value.  The peak-peak values typically increases with the traveling speed of the load 
for a given coupling stiffness and configuration. 

From structural design point of view, a large variance in displacement implies that there 
is considerable room for modifying or improving the dynamic behavior of a bridge by varying 
the c

6. CONCLUSIONS 

The vibration of a multi-span brid g load has been investigated in a 
generic manner.  Unlike in most mu the displacement and its derivative 

oupling stiffnesses.  In bridge design, since the coupling conditions, unlike many other 
structural parameters, can be easily modified in a drastic manner, they may naturally 
constitute a set of design variables to be optimized for achieving a desired behavior of the 
bridge. 
 

ge subjected to a movin
lti-span bridge models, 

are not here required to be continuous at the intermediate supports or any other locations.  In 
other words, the joints between spans are now considered as a part of the design/model 
variables and can be modified or optimized for a desired dynamic behavior.  In essence, the 
current model is a more general representation of multi-span bridges in which each span can 
be independently supported and arbitrarily coupled to its neighbors via a set of linear and 
rotational joints of any stiffness.   

Since the traditional beam and material parameters have been extensively studied and well 
understood in regards to their effects on bridge vibration, this investigation is specifically 
focused on a set of rarely attempted model variables: the coupling conditions between the 
spans.  It has been demonstrated through numerical examples that the coupling stiffness will 
generally have a direct and significant impact on the vibration on each span.  In particular, the 
Peak-Peak deflection on a span is strongly dependent upon the coupling conditions local to 
that span, and fairly insensitive to the coupling conditions at distant junctions.  For a given 
coupling arrangement, the Peak-Peak deflection on each span typically increases with the 
traveling speed of a concentrated load.  Unlike other model variables, the coupling stiffness 
can vary easily by several orders of magnitude.  It is found, however, that the dynamic 
behavior becomes particularly sensitive to the stiffness near a critical value defined by 

1≅EIKL .  Hence, the whole stiffness range can be practically compressed into a much 
smaller one bounded by what are respectively ten times smaller and larger than the critical 

ally, a significantly large variance ratio for the deflection each span shall indicate 
certain room or a great potential for further improving bridge design through considering and 
optimizing the coupling conditions between spans.  In general, there are up to eight 
independent (supporting and coupling) springs associated with each span.  While this 
generalization makes the problem more complicated, it also opens more avenues for us to 
drastically improve the dynamic behavior of a multi-span bridge.    
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