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Abstract 
 
The actual sound environment system exhibits various types of linear and non-linear 
characteristics, and it often contains an unknown structure.  Furthermore, the observations in 
the sound environment are often in the level-quantized form.  In this paper, a method for 
estimating the specific signal for stochastic systems with unknown structure and the quantized 
observation is proposed by introducing a system model of the conditional probability type.  The 
effectiveness of the proposed theoretical method is confirmed by applying it to the actual 
problem of psychological evaluation for road traffic noise. 

1. INTRODUCTION 

The internal physical mechanism of actual sound environment system is often difficult to 
recognize analytically, and it contains unknown structural characteristics.  Furthermore, the 
stochastic process observed in the actual phenomenon exhibits complex fluctuation pattern and 
there exist potentially various nonlinear correlations in addition to the linear correlation 
between input and output time series. 

In our previous study, for complex sound environment systems difficult to analyze by 
using usual structural methods based on the physical mechanism, a nonlinear system model was 
derived in the expansion series form reflecting various type correlation information from the 
higher order to the higher order between input and output variables [1].  The conditional 
probability density function contains the linear and nonlinear correlations in the expansion 
coefficients, and these correlations play an important role as the statistical information for the 
input and output relationship. 

In this paper, a complex sound environment system including the human consciousness 
and response for physical sound phenomena is considered. It is necessary to pay our attention 
on the fact that the observation data in the sound environment system are often measured in a 
level-quantized form.  For example, the human psychological evaluation for noise annoyance 
can be judged by use of 7 levels from 1. very calm to 7. very noisy [2].   Furthermore, the 
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observation data are often measured in a digital level form at discrete times because various 
kinds of statistical evaluation  (e.g., median, mean, covariance, higher order moments, etc.) for 
these quantized level data become easier if a digital computer is used.  In this situation, in order 
to evaluate the objective sound environment system, it is desirable to estimate the waveform 
fluctuation of the specific signal based on the observed data with quantized level.  

From the above viewpoint, based on the quantized observations, a method for estimating 
precisely the specific signal for the sound environment system with unknown structural 
characteristic is theoretically proposed in this study.  More specifically, by adopting an 
expansion expression of the conditional probability distribution reflecting the various 
information on linear and non-linear correlation between the specific signal and the quantized 
observation as the system characteristics, a method to estimate the time series of the specific 
signal is theoretically derived.  The proposed estimation method can be applied to an actual 
complex sound environment system with unknown structure by considering the coefficients of 
conditional probability distribution as unknown parameters and estimating simultaneously 
these parameters and the specific signal.  The proposed method can be applied to several state 
estimation problems for stochastic systems with unknown structure in engineering field.  For 
example, this method can be applied to the estimation of the output signal for information and 
communication systems with unknown system characteristics based on the noisy observation of 
the input signal. Furthermore, this method can be also applied to the blind estimation for 
unknown systems based on the noisy output.  As one of applications, the proposed theory is 
applied to the estimation problem of the psychological evaluation for road traffic noise and the 
effectiveness of the theory is experimentally confirmed.   

2. STOCHASTIC MODEL FOR SOUND ENVIRONMENT SYSTEM WITH 
UNKNOWN STRUCTURE 

Consider a complex sound environment system with an unknown structure that can not be 
obtained on the basis of the internal physical mechanism of the system.  In the observations of 
actual sound environment system, the sound level data are very often measured in a digital level 
form at discrete times.  This is because some signal processing methods by utilizing a digital 
computer are indispensable for extracting exactly various kinds of evaluation quantities based 
on these quantized level data. 

Let kx  and ky  be the specific signal and quantized observation at a discrete time k .  It is 
assumed that there are complex nonlinear relationships between kx  and ky , which are difficult 
to find the fundamental relationships between them.  A method to estimate kx  based on the 
quantized observation ky  is derived in this study.  Since the system characteristics are 
unknown, a system model in the form of a conditional probability is adopted.  More precisely, 
attention is focused on the conditional probability distribution function )|( kk xyP  reflecting all 
linear and non-linear correlation information between kx  and ky . 

Expanding the joint probability distribution function ),( kk yxP  in an orthogonal form 
based on the product of )( kxP  and )( kyP , the following expression on the conditional 
probability distribution function can be derived.  

                           ∑ ∑=
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where < > denotes the averaging operation on the variables.  The linear and non-linear 
correlation information between kx  and ky  is reflected hierarchically by each expansion 
coefficient rsA .  The functions )((1)

kr xθ  and )((2)
ks yθ  are orthonormal polynomials with the 

weighting functions )( kxP  and )( kyP  respectively, and satisfy the following orthonormal 
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These orthonormal polynomials can be decomposed by using Schmidt’s orthogonalization [3].  
Though (1) is originally an infinite series expansion, a finite expansion series with Rr ≤  and 

Ss ≤  is adopted because only finite expansion coefficients are available and the consideration 
of the expansion coefficients from the first few terms is usually sufficient in practice.  Since the 
objective system involves an unknown specific signal, unknown structure and unknown 
observation noise, the expansion coefficients rsA  expressing hierarchically the statistical 
relationship between the specific signal and observation must be estimated on the basis of the 
noisy observation ky .  Considering the expansion coefficients rsA  as unknown parameter 
vector a : 
                          )...,,,()...,,,( )((2)(1)21 SIaaa aaaa ≡≡ ,    

)...,2,1,(),...,,,( 21)( SsAAA Rssss =≡a ,                                                (4) 
the following simple dynamical model is naturally introduced for the simultaneous estimation 
of the parameters with the specific signal kx : 
                       kk aa =+1 ,    

))...,,,()...,,,(( ),((2),(1),,2,1, kSkkkIkkk aaa aaaa ≡≡ ,                                      (5) 
where )( SRI ⋅=  is the number of unknown expansion coefficients to be estimated. 

On the other hand, based on the correlative property in time domain for the specific signal 
fluctuating with non-Gaussian property, the following time transition model for the specific 
signal is generally established. 
                            kkk GuFxx +=+1 ,                                                               (6) 
where ku  is the random input with mean 0 and variance 2

uσ .  Two parameters F  and G  are 
estimated by using an auto-correlation technique [3]. 

3. DERIVATION OF STATE ESTIMATION ALGORITHM 

To derive an estimation algorithm for the specific signal kx , attention is focused on Bayes’ 
theorem for the conditional probability distribution [3, 4].  Since the parameter ka  is also 
unknown, the conditional probability density function of kx  and ka  is considered. 
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YyxPYxP aa ,                                                           (7) 

where kY  is a set of observation data up to time k .  The conditional joint probability 
distribution )|,,( 1−kkkk YyxP a  can be generally expanded in a statistical orthogonal expansion 
series 

)|()|()|()|,,( 1010101 −−−− = kkkkkkkkkk YyPYPYxPYyxP aa  
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with 
               >=< −1

(3)(2)(1) |)()()( kknkklnl YyxB ϕϕϕ amm .                                                    (9) 
After substituting (8) into (7) and expanding an arbitrary polynomial function ),(, kkL xf aM  of 

kx  and ka  with the ( M,L )th order in a series expansion form using )}({ (1)
kl xϕ  and 
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)}({ (2)
kamϕ : 
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by taking the conditional expectation of the function ),(, kkL xf aM  and using the orthonormal 
condition for the functions )((1)

kl xϕ  and )((2)
kamϕ , the estimate of the function ),(, kkL xf aM  

can be derived as an infinite series expression, as: 
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The three functions )(),( (2)(1)
kkl x amϕϕ  and )((3)

kn yϕ  are orthonormal polynomials of degrees 
l , )...,,,( 21 Immm≡m  and n  with weighting functions )|( 10 −kk YxP , )|( 10 −kk YP a  and 

)|( 10 −kk YyP , which can be chosen as the probability function describing the above dominant 
parts of the actual fluctuation or as standard probability distribution. 
        As an example of standard probability functions for the specific signal and the parameter, 
consider the Gaussian distribution: 
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Furthermore, as the fundamental probability function on the level-quantized observation, the 
generalized binomial distribution [5] with level difference interval yh  can be chosen: 
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where My  is the minimum level of observations.  The orthonormal polynomials with three 
weighting probability distributions in (12)-(14) can be determined as 
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where )(•lH  denotes the Hermite polynomial with l th order, and )( jy  is the j th order 
factorial function defined by [5] 
               1),)1(()2)(( )0()( =−−⋅⋅⋅−−= yhnyhyhyyy yyy

n .                                          (18) 

In two special cases when ( ) ( ) ( )2,2,1 ˆ,,, kkkkkkk xxxfxxf −== aa 00 , estimates related to 
mean and variance of the state variable are expressed as follows: 
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     Using the property of conditional expectation and (2), the two variables *
ky  and kyΩ  in 

(14) can be expressed in functional forms on predictions of kx  and ka  at a discrete time 1−k  
(i.e. the expectation value of arbitrary functions of kx  and ka  conditioned by )1−kY , as 
follows: 
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where T  denotes the transpose of a matrix.  The coefficients sd1  and sd2  in (22) and (23) are 

determined in advance by expanding ky  and 2* )( kk yy −  in the following orthogonal series 
forms: 
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Furthermore, using (1) and the orthonormal condition of )()2(
ki yθ , each expansion coefficient 

nlB m  defined by Eq.(9) can be obtained trough the similar calculation process to (22) and (23), 
as follows:  
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In the above, the expansion coefficient nlB m  can be given by the predictions of kx  and ka . 
Finally, by considering (5) and (6), the prediction step to perform the recurrence 

estimation can be given for an arbitrary polynomial function ),( 11, ++ kkL xg aM  with the 
),( ML th order, as follows: 

                     >≡< ++++ kkkLkkL Yxgxg |),(),( 11,11
*

, aa MM  
>+=< kkkkL YGuFxg |),(, aM .                                                (27) 

The above equation means that the predictions of 1+kx  and 1+ka  at a discrete time k  are given 
in the form of estimates for the polynomial functions of kx  and ka .  Therefore, by combining 
the estimation algorithm of (19) and (20) with the prediction algorithm of (27), the recurrence 
estimation of the specific signal can be achieved.  

4. APPLICATION TO PSYCHOLOGICAL EVALUATION OF ROAD 
TRAFFIC NOISE 

To find the quantitative relationship between the human noise annoyance and the physical 
sound level for environmental noises is important from the viewpoint of noise assessment.  It 
has been reported that the noise annoyance based on the human sensitivity can be distinguished 
each other from 7 annoyance scores in the psychological acoustics [2]. For instance, 1.very 
calm, 2.calm, 3.mostly calm, 4.little noisy, 5.noisy, 6.fairly noisy, 7.very noisy. 
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After recording the road traffic noise by use of a sound level meter and a data recorder, by 
replaying the recorded tape through amplifier and loudspeaker in a laboratory room, 6 subjects 
(A, B, …, F) with normal hearing ability judged one score among 7 noise annoyance scores (i.e., 
1, 2, …, 7) at every 5 [sec.], according to their impressions of the sound at each moment using 7 
categories from very calm to very noisy.  Two kinds of data (Data 1 and Data 2) were used, 
namely, the sound level data of road traffic noise with mean values 71.4 [dB] and 80.2 [dB].  
The proposed method was applied to an estimation of the time series kx  for sound level of a 
road traffic noise based on the successive judgments ky  on human annoyance scores. 

Figure 1 shows one of the estimated results of the waveform fluctuation of the sound level. 
In this figure, the horizontal axis shows the discrete time k , of the estimation process, and the 
vertical axis represents the sound level.  For comparison, the estimated result obtained by 
introducing the linear system: 

kkkkkk vxy γβα ++= ,                                                          (28) 
as the relationship between kx  and ky  for the human evaluation, is also shown in this figure.  
In (28), kv  denotes a white noise process with mean 0 and variance 1.  Since kk βα ,  and kγ  
are also unknown parameters, the well-known Extended Kalman filter [6] can be applied to 
estimate simultaneously the specific signal kx  and the parameters kk βα ,  and kγ , by 
introducing the dynamic model on the parameters: 

                                        kkkkkk γγββαα === +++ 111 ,, ,                                            (29) 

in addition to the time transition model of kx  shown in (6). There are great discrepancies 
between the estimates based on the extended Kalman filter and the true values, while the 
proposed method estimates precisely the waveform of the sound level with rapidly changing 
fluctuation.  

The root mean squared errors of the estimation are shown in Table 1 (for Data 1) and Table 
2 (for Data 2) for both cases applying the proposed method and the extended Kalman filter. It is 
obvious that the proposed method shows more accurate estimations than the results based on 
the standard dynamic estimation method. 
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    Figure 1.  Estimation results of the fluctuation waveform of the  

sound level based on the successive judgment on  
human annoyance scores by the subject A  (for Data 1). 
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Table 1. Root mean squared error of the estimation in [dB] (for Data 1). 

 
Subject    A    B    C    D  E   F 
Proposed 
Method 

3.94 4.89 4.56 4.28 3.91 3.59 

Extended 
Kalman Filter 

5.04 7.53 16.6 7.99 5.46 4.17 

 
 

Table 2. Root mean squared error of the estimation in [dB] (for Data 2). 

 
Subject    A   B   C  D   E   F 
Proposed 
Method 

3.94 4.89 4.56 4.28 3.91 3.59 

Extended 
Kalman Filter 

5.04 7.53 16.6 7.99 5.46 4.17 

 

5. CONCLUSIONS 

In this paper, based on the observed data with quantized level, a new method has for estimating 
the specific signal for sound environment systems with unknown structure has been proposed. 
The proposed estimation method has been realized by introducing a system model of the 
conditional probability type and regarding the expansion coefficients as unknown parameters to 
be estimated. The proposed method has been applied to the estimation of an actual road traffic 
noise, and it has been experimentally verified that better results are obtained compared with a 
standard estimation technique by introducing a linear system model. 
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