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Abstract 
 
In this paper the parametrically excited vibrations of the rotor are analyzed. The rotor is 
considered as a shaft-disc system. The parameters of the system are time dependent. The 
mathematical model of the rotor is a system of two coupled differential equations of Hill’s 
type. The parametric excitation has the form of the Jacobi elliptic function. The vibrations of 
the system are obtained analytically and numerically. Two analytical methods for solving are 
developed: the method of harmonic balance based on the elliptic functions and the Krylov-
Bogolubor method with variable amplitude and phase. The analytical solutions are compared 
with numerical ones. They are in a good agreement. 

1. INTRODUCTION 

The rotors with time variable parameters are the fundamental working elements of many 
machines in cable, paper, carpet, textile industry as well as in process industry. Usually the 
variation of parameters is periodical. In the most papers dealing with the rotor dynamics a 
simplification is made and the parameters are assumed to be constant. Unfortunately, this 
model differs significantly from the real one. The aim of this paper is to analyze the influence 
of parametrical excitation on the dynamics of the rotor. 

The rotor is modeled as a shaft-disc system. Mass of the shaft is negligible in 
comparison to the mass of the disc. The disc is settled in the middle of the shaft. The shaft is 
supported in two rigid bearings. The parameter of the rotor is time dependent. It varies 
periodically in time and represents the parametrical excitation of the system. 
 The mathematical model of the rotor is a second order differential equation with 
complex function of Hill’s type 

,0)],([ 22 =++ zktDcnCz ω&&                (1) 
where C and D are constants, z=x+iy is the complex deflection function, x, y are coordinates 
of mass center, 1−=i  is the imaginary unit, cn is the Jacobi elliptic function [1]. k is the 
modulus of the Jacobi function. 
 Separating the real and imaginary part of the eq. (1) two second order ordinary 
differential equations are obtained 
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The equations have the same form. The initial conditions for t=0 are  .,,, 0000 yxyx &&

 There are many papers considering the solution of the Mathieu’s equation as the special 
case of Hill’s equation (see [2]-[4]). In all of these papers it is assumed that the excitation has 
the form of the circular harmonic function (sinus or cosines) and the excitation is small. For 
solving such equations some approximate analytical methods are developed. In the paper [5] 
the excitation is of Jacobi elliptic type. The system has one degree of freedom. 

In this paper the extension to the two degree of system with parametric excitation of 
elliptic type is done. The Jacobian elliptic function is with the period 4K which is the 
complete elliptic integral of the first kind. The methods developed for solving Mathieu’s 
equation are adopted for this problem. 

2. MATHEMATICAL MODEL OF THE ROTOR 

Let us consider the vibrations of the rotor in the polar coordinates. For )exp( θρ iz = , where ρ 
is the deflection of mass center and θ is the polar angle, the eq. (1) transforms into  

,0)],([ 222 =++− ρωθρρ ktDcnC&&&               (3) 
,02 =+ θρθρ &&&&                   (4) 

with the initial conditions  The connections between the initial conditions for the 
eq. (2) and (3,4) are 
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The equation (4) has the first integral 
.0

2
0

2 const=== κθρθρ &&                 (6) 
Introducing (6) into (3) the Ermakov-Pinney equation is obtained 

.)],([ 3
22

ρ
κρωρ =++ ktDcnC&&                (7) 

It is a non-linear second order differential equation with periodically time variable parameter. 
Let us solve the eq.(7). Two groups of problems will be considered: a) κ=0 and .0≠κ  Which 
of these two cases will appear depends on the initial conditions. 

3. HARMONIC BALANCE FOR THE CASE WHEN 0=κ  

For the case when the initial conditions are 
,)0( 0ρρ = ,)0( 0θθ = ,0)0( 0 == ρρ && ,0)0( 0 ==θθ &&             (8) 

it is 0=κ and the equation of motion is 
.0)],([ 22 =++ ρωρ ktDcnC&&                 (9) 

 Let us assume the solution of the equation (9) in the form 
),,( 22 ktBcnA ψωρ +−=               (10) 

where A, B and ψ are constants. Substituting the assumed solution in (9) and separating the 
terms with the same order of the function cn, we obtain 
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It means that the solution (10) is correct only for the case when the relations between the 
parameters are (11) and (12). From the eq.(12) it is evident that the coefficients of Jacobi 
function do not depend on the initial conditions. Substituting (11) into (12) it is 
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The coefficients B and ψ have to be obtained according to the initial conditions. Introducing 
the initial conditions it is 
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4. THE METHOD OF VARIABLE PHASE AND AMPLITUDE FOR THE 
CASE WHEN  0≠κ

For the case when 0≠κ , and the nonlinearity is small the solution of the equation (7) is 
obtained applying the method of slow variable amplitude and phase. 
 Let us form the trial solution according to (10) as 

],),([)()( 22 ktcntBtA θρ −=               (15) 
where 
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The first time derivative of (15) is 
,2 sncndnBωρ =&                 (17) 

with the constraint 
,02]),([ 22 =+− sncndnBktcnBA ψθ &&&             (18) 

where    Substituting (15) and (17) into 
(7) it is 
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Averaging the eqs.(19) and (20) in the period of 4K as ∫=
K

d
4

0

...... θ  and integrating the so 

obtained equations using the initial conditions it is 
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where B0 and ψ0 are constants obtained according to the initial conditions, and 
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For the initial conditions 0)0( ρρ =  and 0)0( =ρ&  it is 
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 The main disadvantage of the method is that the so obtained solution is evident only for 
a special type of periodically time variable function when the relations between parameters 
are given as (12) and (21). 

5. VIBRATIONS OF THE ROTOR WITH SMALL EXCITATION 

Let us consider the case when the excitation is small and D<<C. According to Stegun [6] the 
series expansion of the Jacobi function cn to circular function cos is 
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where )/'exp( KKq π−= ,  and )(kKK ≡ ).1(' 2kKK −≡  Substituting (25) into (1) and 
assuming only the first two terms of the series expansion the differential equation of motion 
simplifies to 
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 Let us solve the equation applying the method of variable amplitude and phase. For ε=0 
the generating solution is 

),cos()cos( 21 βωαω +++= tiBtAz             (27) 
where .121 C==ωω  According to (27) let us assume the trial solution for (26) in the form 

),(cos)()(cos)( 21 ttiBttAz ψψ +=              (28) 
where )()( 11 ttt αωψ +=  and ).()( 12 ttt βωψ +=  The first time derivative is 

,sinsin 2111 ψωψω iBAz −−=&               (29) 
with the constraint 

.0sincossincos 222111 =−+− ψψψψψψ &&&& iBiBAA            (30) 
Substituting (28) and the derivative of (20) into (26) and separating the real and the imaginary 
terms two differential equations are obtained 

4 



ICSV14 • 9-12 July 2007 • Cairns • Australia 

,)(coscoscossin
1

1
11111 ω

αψψεψαωψω −Ω
=−− aAAA &&           (31) 

.)(coscoscossin
2

2
22121 ω

βψψεψβωψω Ω−
=−− aBBB &&          (32) 

Using the relations (30)-(32) it is 
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Averaging the angles ψ1 and ψ2 in the period of 2π the eqs.(33) – (36) are 
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 Solving the eq.(38) and eq.(40) for the initial conditions 0)0( αα =  and 0)0( ββ =  we 
obtain 
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Substituting (41) and (42) into (37) and (39) and integrating for the initial conditions 
 and  it gives 0)0( AA = 0)0( BB =
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The values 0000 ,,, βαBA  are obtained from the following relations 
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The deflection of the rotor center is 
,)(cos)(cos 2222 βωαωρ +++= tBtAA            (45) 

according to relations (41) – (44).  

6. EXAMPLE 

Let us compare the analytically obtained solutions with numerically obtained one. The Runge-  
Kutta numerical method is applied for solving the system of differential equations (2). The 
parameters of the system are: 3=C  and D = 3. According to (12) it is ω = 1 and k2 = 0.5. 
The initial conditions are ,5.00 =ρ ,00 =ρ& ,00 =θ .10 =θ&  The constant coefficient is κ = 0. 
In Fig.1. the analytically obtained solution (45) is compared with numerically obtained one 
(7). 
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Figure 1. The time-history diagrams obtained analytically-averaged and exact numerical. 

 

7. CONCLUSIONS 

In this paper the parametrically excited vibrations of the rotor are analyzed. It is concluded: 
 For a special group of parameters and initial conditions using the method of harmonic 
balance the exact solution of the differential equation (1) is obtained. 
 Comparing the analytical and numerical solutions (see Fig.1.) it can be concluded that 
the simplification of the Jacobi elliptic function to a simple harmonic function is possible only 
for the case when the excitation is small. The analytical solution is the averaged value of the 
exact solution. The difference between the solutions is significant for the longer time period. 
The vibrations depend on the initial conditions: the simplification of the excitation function is 
limited with initial conditions. 
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