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Abstract 
In this paper, an MR mount with flow mode operation is studied for vibration suppression 
subject to base excitations. Recently, magneto-rheological (MR) fluid has become a popular 
material for actuator use. There are some good properties associated with MR fluid such as the 
reversible, controllable, and continuous change of rheological characteristics upon application 
of magnetic field. However, the dynamic equation of MR mount is highly nonlinear, hence 
making the controller design an extremely difficult task. This paper aims to develop a 
semi-active control technique for suppressing vibration of an MR mount subject to its base 
disturbances. The adaptive control scheme is employed for vibration attenuation. Function 
approximation technique is used here to represent the unknown system dynamics including the 
external disturbance in some finite linear combination of the orthogonal basis. The dynamics of 
MR mount system can thus be proved to be a stable first order filter driven by function 
approximation errors. Moreover, the adaptive update law can be obtained by using the 
Lyapunov stability theory.  The well-known skyhook control scheme and a controller with 
constant applied magnetic field are to be compared with the proposed adaptive controller for 
semi-active vibration control of the MR mount. 

INTRODUCTION 

 
For vibration attenuation purpose, many kinds of products have been developed, such as 

dampers, shock absorbers and suspension system, etc. Severe vibration of a system can cause 
damage, even leading to safety problem. A lot of passive devices are used in engineering 
application to absorb or isolate unwanted vibration, but the adaptive ability of passive devices is 
poor. The semi-active control could provide better performance than the passive control, which 
has been stated in many fields by many researchers. Compared to the active control, the 
semi-active control has many advantages, such as low power requirement, higher reliability and 
simpler structure, etc [1-6].  

Recently, smart materials are applied widely and rapidly, such as liquid crystal, 
piezoelectric ceramics [7], magnetorheological fluids, and electro-rheological fluids [8], etc. 
MR fluid consists of micron-sized, magnetically polarizable particles dispersed in silicone oil 
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[9]. MR fluid with viscous damping property can be effectively controlled by the magnetic field 
(generally controlled by adjusting the current to the electromagnetic coil). Specifically, MR 
fluid has board operational temperature (-40 to +150 ) , fast response time (less than 
milliseconds), low power requirement (2-50 watts), and high yield stress (50–100 kPa ) [10]. 
Actuators incorporating these advantages have prominent potentials for vibration suppression, 
under complex and varied environment.  

Co

However, an MR system under operation may contain a time varying disturbance and 
intrinsic nonlinear properties. Thus, closed loop stability is hard to guarantee by linear 
controller. In order to improve performance, several control schemes have been discussed in the 
literatures, such as skyhook, neural network, neuro-fuzzy Control and  control, etc. Choi 
studied the effects of  and skyhook control for full vehicle suspensions featuring MR using 
the method of HILS (hardware-in-the-loop simulation) [11,12]. Kim and Roschke provided a 
linearization scheme for MR damper behavior using a neural network [13]. Two years later, 
Schurter and Roschke described a neuro-fuzzy technique to reduce vibration with a MR damper 
[14]. Yokoyama, Hedrick and Toyama presented a model following sliding mode controller for 
semi-active suspension systems with MR dampers [15]. Many of these robust control 
techniques can approximate time varying parameters and attenuate disturbances, yet requiring 
that all uncertainties be defined in several compact sets. 

∞H

∞H

 In this paper, an adaptive sliding controller and function approximation technique are 
proposed to deal with modeling uncertainty and unknown disturbance [16-18]. It uses a finite 
linear combination of the orthogonal basis functions to approximate unknown disturbance. 
Furthermore, not only the convergence of tracking error but also the update law of coefficients 
can be obtained by applying Lyapunov stability theorem. The paper is organized as follows. 
Section II gives a brief formulation of MR mount model and its schematic configuration. 
Section III derives the adaptive sliding control in detail. Moreover, this section uses Lyapunov 
liked design to obtain the update law of coefficients of the approximation series. Section IV 
presents the simulation results of the sliding mode controller for semi-active control of an MR 
mount. In addition, the well-known skyhook control scheme and control with constant current  
are to be compared with the proposed adaptive controller. Finally in Section V conclusions are 
briefly made. 

PROBLEM FORMULATION 

The schematic configuration and its corresponding hydraulic model of a one-dimensional 
MR mount are shown in Fig. 1. Equation of motion of the system can be derived as [12]: 
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Figure 1. Sketch of an MR mount (left) and its hydraulic model (right)

 
It is noticed that  is the mass,  is the damping constant of the rubber,  is the flow area, m b A η  
is the viscosity of the MR fluid, h  is the gap of the magnetic pole, k  is the stiffness of the 
rubber,  is the piston area of the upper chamber,  and  are the compliance of the upper 
and lower chamber,  is the width of the magnetic pole, L is the length of the magnetic pole, 

 is the flow behaviour index of Herschel-Bulkey model,  and  represent the 
displacements at the mass and base, respectively. 
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where  and xz =1 xz &=2  are state variables, B and u  represent the unknown input gain and 
control input. 
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Assumption:  is an unknown function with unknown variation bound, but it remains 
continuous and bounded for all admissible  and for all 

)z,( tf
z ),[ 0 ∞∈ tt . 

Remark: Eq. (4) is obtained by assuming that yield stress of the MR fluid in driven flow mode 
)(Hyfτ is much greater than that in direct shear mode )(Hysτ . 
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ADAPTIVE SLIDING CONTROLLER DESIGN 

In this section, design procedures of adaptive sliding controller for MR mount of Fig. 1 
are briefly given. In the beginning, we define sliding surfaces ees λ+= & , where dzze 11 −= , 

,  represents the desired value of state, dzze 22 −=& idz 2,1=i , λ  is a parameter to be 
arbitrarily selected, and the time derivative of  can be derived as s
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Eq. (8) can be stabilized by selecting u  as 
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where B̂  and  are the estimate values of unknown f̂ B  and , respectively. The positive value f
η  is to be determined. φ  is the width of the sliding boundary layer. Substituting Eq. (9) into Eq. 
(8), we can obtain 
 
  φηφη /~~/)ˆ()ˆ( sfuBsffuBBs −+=−−+−=&      (10) 
where BBB ˆ~ −=  and fff ˆ~

−= . Since  is a time varying uncertainty, the function 
approximation technique can be applied here to transform the uncertainty into a finite linear 
combination of the orthogonal basis. Specifically,  and  can be represented as 

f

f f̂
 

ε+= φwf Τ            (11) 
φwf Τˆˆ =             (12) 

 
where  are weighting vector,  is the vector of basis function, the positive 
constant n  is the number of basis functions used in the approximation, 

nww ℜ∈ˆ, nℜ∈φ
ε  is the truncation error. 

Substituting Eqs. (11) and (12) into Eq. (10) yields 
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where www ˆ~ −= . We may select the Lyapunov function candidate as 
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where  is a positive definite matrix and nn×ℜ∈Q ρ  is a positive value. Taking time derivative 
of Eq. (14), we have 
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We may select the update law as 
 

φsQw 1ˆ −=&             (16) 

usρB 1ˆ −=&             (17) 
To avoid the singularity problem, in Eq. (17) can be modified as 
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where B  is a known lower bound of B . 
By Eq. (16)-(18), we can derive that 
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If sufficient basis functions are used such that function approximation error 0≈ε , then Eq. (19) 
becomes 
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From Eq. (20) we can easily find that the system is uniformly stable and s , B~, w~ ∞∈L . By Eq. 
(13) we can have . To acquire the asymptotical stability, we need to prove that . It 
can be proved by Eq. (21) 
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Since  and , by Barbalat’s lemma, we can have asymptotical stability and 2LLs I∞∈ ∞∈Ls&
B~, w~ ∞∈L ; therefore, all estimations remain bounded. 
 
Remark 1: If approximation error cannot be neglected, but there exists a positive constant 

0>δ  such that δε ≤|| . To cover the effect of this bounded approximation error, Eq. (9) is 
modified to be 
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By select δ)sgn(surobust −= , we may also conclude the asymptotical stability of system. 
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Remark 2: To avoid parameter drift, the σ  modification technique [19] can be used to (16) 
and (18). 

φsQw 1ˆ −=& ww ˆσ−                                          (24) 
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where wσ  and Bσ  are small positive constants. 
 
Remark 3: The MR mount control is a semi-active one; therefore control action should follow 
the actuating condition [7]. 
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SIMULATION RESULTS 

The system parameters used in the simulation are shown in Table 1 and n=41 terms of 
Fourier orthogonal basis are used for function approximation. The sinusoidal disturbances y(t) 
with frequency between 1Hz~15Hz and amplitude at 1  are employed as the base excitation. mm
 

Table 1. System parameters. 

Parameter Specification Value Unit 
m  load mass 60 kg  
b  rubber damping 610 mNs /
A  flow area 0.0095 2m  
η  MR fluid viscosity 0.8 2/ mNs
h  gap of magnetic pole 0.01 m  
k  rubber stiffness 133240 mN /  

pA  piston area of upper chamber 0.009 2m  

1C  ,  2C compliance of upper and lower chamber 8103 −×≈  Nm /3

W  magnetic pole width 0.45 m  
n  flow behaviour index of Herschel-Bulkey model 0.8  

 
The simulation results of vibration control are shown in Fig. 2-4. Fig. 2 shows the frequency 
response of the system under various control schemes. We can find that the proposed controller 
has much better performance for vibration attenuation than other controllers. Fig. 3 shows the 
time response of the corresponding controller nearby the resonant frequency excitation. The 
proposed controller indeed outperforms other controllers. Fig. 4 compares the approximate 
values of unknown function  with the true values  and depicts the convergence history of 
the input gain. Though approximation errors do not converge to zero, they are indeed bounded. 

f̂ f
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Figure 2. Frequency response for 1Hz~15Hz disturbance 

 

 
Figure 3. Vibration attenuation nearby resonant frequency excitation (8Hz) 

Figure 4. Approximation of the unknown function (left) and the convergence history  
of the input gain (right) 

CONCLUSION 

This paper proposed an adaptive sliding control with function approximation technique 
for MR mount. In section III, we have given a brief proof of the stability and update law by 
Lyapunov stability theory. Although the model parameter and disturbance bounds are not 
available, we can still obtain good performances from numerical simulation results in section 
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IV. Therefore, the estimates do not converge to actual values, but all remain bounded. With the 
proposed controller, MR mount can achieve vibration attenuation in a broadband frequency 
range. 
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